H. Berger, ??ber das Elektrenkephalogramm des Menschen, Archiv f??r Psychiatrie und Nervenkrankheiten, vol.87, issue.1, pp.527-570, 1929.
DOI : 10.1007/BF01797193

A. Lucier, Music for solo performer. Lovely Music, Ltd., 1982. for enormously amplified brain waves and percussion -originally composed in, 1965.

P. Henry, Mise en musique du corticalart de Roger Lafosse. Philips " Prospective 21e sicle, Vinyl LP, 1971.

J. J. Vidal, Toward Direct Brain-Computer Communication, Annual Review of Biophysics and Bioengineering, vol.2, issue.1, pp.157-180, 1973.
DOI : 10.1146/annurev.bb.02.060173.001105

J. R. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurtscheller, and T. M. Vaughan, Brain???computer interfaces for communication and control, Clinical Neurophysiology, vol.113, issue.6, pp.767-791, 2002.
DOI : 10.1016/S1388-2457(02)00057-3

J. R. Wolpaw and E. W. Wolpaw, BCI: Principles and Practice, 2012.

J. R. Wolpaw, D. J. Mcfarland, G. W. Neat, and C. A. Forneris, An EEG-based brain-computer interface for cursor control, Electroencephalography and Clinical Neurophysiology, vol.78, issue.3, pp.252-259, 1991.
DOI : 10.1016/0013-4694(91)90040-B

G. Pfurtscheller, D. Flotzinger, and J. Kalcher, Brain-computer interfacea new communication device for handicapped persons. journal of microcomputer application, pp.293-299, 1993.

N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey et al., A spelling device for the paralysed, Nature, vol.398, issue.6725, pp.297-298, 1999.
DOI : 10.1038/18581

L. A. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalography and Clinical Neurophysiology, vol.70, issue.6, pp.510-523, 1988.
DOI : 10.1016/0013-4694(88)90149-6

B. Graimann, B. Allison, and G. Pfurtscheller, Braincomputer interfaces: Revolutionizing human-computer interaction

J. R. Millán, R. Rupp, G. Müller-putz, R. Murray-smith, C. Giugliemma et al., Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges, Frontiers in Neuroscience, vol.1, 2010.
DOI : 10.3389/fnins.2010.00161

A. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose et al., Brain-Computer Interfaces, Virtual Reality, and Videogames, Computer, vol.41, issue.10, pp.4166-72, 2008.
DOI : 10.1109/MC.2008.410

T. O. Zander and C. Kothe, Towards passive brain???computer interfaces: applying brain???computer interface technology to human???machine systems in general, Journal of Neural Engineering, vol.8, issue.2, 2011.
DOI : 10.1088/1741-2560/8/2/025005

J. J. Daly and J. R. Wolpaw, Brain???computer interfaces in neurological rehabilitation, The Lancet Neurology, vol.7, issue.11, pp.1032-1043, 2008.
DOI : 10.1016/S1474-4422(08)70223-0

K. Keng, A. , and C. Guan, Brain-computer interface in stroke rehabilitation, Journal of Computing Science and Engineering, vol.7, issue.2, pp.139-146, 2013.

J. R. Wolpaw, G. E. Loeb, B. Z. Allison, E. Donchin, O. F. Do-nascimento et al., BCI Meeting 2005???Workshop on Signals and Recording Methods, BCI meeting 2005?workshop on signals and recording methods, pp.138-141, 2006.
DOI : 10.1109/TNSRE.2006.875583

A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, A survey of signal processing algorithms in brain???computer interfaces based on electrical brain signals, Journal of Neural Engineering, vol.4, issue.2, pp.35-57, 2007.
DOI : 10.1088/1741-2560/4/2/R03

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain???computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.1-13, 2007.
DOI : 10.1088/1741-2560/4/2/R01

URL : https://hal.archives-ouvertes.fr/inria-00134950

A. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue, BCI Meeting 2005???Workshop on Clinical Issues and Applications, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.2, pp.131-134, 2006.
DOI : 10.1109/TNSRE.2006.875585

C. Neuper and G. Pfurtscheller, Brain-Computer Interfaces, chapter Neurofeedback Training for BCI Control The Frontiers Collection, pp.65-78, 2010.

P. Kindermans, M. Tangermann, K. Müller, and B. Schrauwen, Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller, Journal of Neural Engineering, vol.11, issue.3, p.35005, 2014.
DOI : 10.1088/1741-2560/11/3/035005

F. Lotte, Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain–Computer Interfaces, Proceedings of the IEEE, 2015.
DOI : 10.1109/JPROC.2015.2404941

C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, How many people are able to operate an eeg-based brain-computer interface (bci)?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, issue.2, pp.145-147, 2003.
DOI : 10.1109/TNSRE.2003.814481

C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz et al., How many people are able to control a P300-based brain-computer interface (BCI)? Neuroscience Letters, pp.94-98, 2009.

C. Guger, Z. Brendan, B. Allison, R. Großwindhager, C. Prückl et al., How many people could use an ssvep bci? Frontiers in neuroscience, 2012.

B. Z. Allison and C. Neuper, Could Anyone Use a BCI?, Brain-Computer Interfaces of Human-Computer Interaction Series, pp.35-54, 2010.
DOI : 10.1007/978-1-84996-272-8_3

S. Brandl, J. Höhne, K. Müller, and W. Samek, Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
DOI : 10.1109/NER.2015.7146600

M. Fatourechi, A. Bashashati, R. Ward, and G. Birch, EMG and EOG artifacts in brain computer interface systems: A survey, Clinical Neurophysiology, vol.118, issue.3, pp.480-494, 2007.
DOI : 10.1016/j.clinph.2006.10.019

F. Lotte, J. Fujisawa, H. Touyama, R. Ito, M. Hirose et al., Towards ambulatory brain-computer interfaces, Proceedings of the International Conference on Advances in Computer Enterntainment Technology, ACE '09, pp.336-339, 2009.
DOI : 10.1145/1690388.1690452

URL : https://hal.archives-ouvertes.fr/inria-00411284

N. Neumann and A. Kubler, Training locked-in patients: a challenge for the use of brain~computer interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, issue.2, pp.169-172, 2003.
DOI : 10.1109/TNSRE.2003.814431

F. Lotte and C. Jeunet, Towards improved BCI based on human learning principles, The 3rd International Winter Conference on Brain-Computer Interface, 2015.
DOI : 10.1109/IWW-BCI.2015.7073024

URL : https://hal.archives-ouvertes.fr/hal-01111843

E. Niedermeyer, F. Lopes, and . Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2005.

H. H. Jasper, The ten-twenty electrode system of the international federation, Electroencephalography and Clinical Neurophysiology, vol.10, issue.2, pp.371-375, 1958.

G. Pfurtscheller, F. H. Lopes, and . Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology, vol.110, issue.11, pp.1842-1857, 1999.
DOI : 10.1016/S1388-2457(99)00141-8

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication. proceedings of the IEEE, pp.1123-1134, 2001.

E. V. Friedrich, R. Scherer, and C. Neuper, Long-term evaluation of a 4-class imagery-based brain???computer interface, Clinical Neurophysiology, vol.124, issue.5, pp.916-927, 2013.
DOI : 10.1016/j.clinph.2012.11.010

J. R. Millán, J. Mouri-no, M. Franzé, F. Cincotti, M. Varsta et al., A local neural classifier for the recognition of EEG patterns associated to mental tasks, IEEE Transactions on Neural Networks, vol.13, issue.3, pp.678-686, 2002.
DOI : 10.1109/TNN.2002.1000132

J. Kronegg, G. Chanel, S. Voloshynovskiy, and T. Pun, EEG-Based Synchronized Brain-Computer Interfaces: A Model for Optimizing the Number of Mental Tasks, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.1, pp.50-58, 2007.
DOI : 10.1109/TNSRE.2007.891389

C. C. Duncan, R. J. Barry, J. F. Connolly, C. Fischer, P. T. Michie et al., Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400, Clinical Neurophysiology, vol.120, issue.11, pp.1883-1908, 2009.
DOI : 10.1016/j.clinph.2009.07.045

R. M. Chapman and H. R. Bragdon, Evoked Responses to Numerical and Non-Numerical Visual Stimuli while Problem Solving, Nature, vol.48, issue.4950, pp.1155-57, 1964.
DOI : 10.1038/2031155a0

J. Polich, Updating P300: An integrative theory of P3a and P3b, Clinical Neurophysiology, vol.118, issue.10, pp.2128-2148, 2007.
DOI : 10.1016/j.clinph.2007.04.019

R. Chavarriaga, A. Sobolewski, J. Del, and R. Millán, Errare machinale est: the use of error-related potentials in brain-machine interfaces, Frontiers in Neuroscience, vol.37, issue.88, p.2014
DOI : 10.1016/j.patrec.2013.05.020

G. Schalk, R. Jonathan, . Wolpaw, J. Dennis, G. Mcfarland et al., EEG-based communication: presence of an error potential, Clinical Neurophysiology, vol.111, issue.12, pp.2138-2144, 2000.
DOI : 10.1016/S1388-2457(00)00457-0

G. R. Mcmillan, G. L. Calhoun, M. S. Middendorf, J. Schuner, D. F. Ingle et al., Direct brain interface utilizing self-regulation of steady-state visual evoked response, Proceedings of RESNA, pp.693-695, 1995.

F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives, Progress in Neurobiology, vol.90, issue.4, pp.418-438, 2010.
DOI : 10.1016/j.pneurobio.2009.11.005

G. Müller-putz, R. Scherer, C. Neuper, and G. Pfurtscheller, Steady-State Somatosensory Evoked Potentials: Suitable Brain Signals for Brain???Computer Interfaces?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.1, pp.30-37, 2006.
DOI : 10.1109/TNSRE.2005.863842

C. Gouy-pailler, S. Achard, B. Rivet, C. Jutten, E. Maby et al., Topographical Dynamics of Brain Connections for the Design of Asynchronous Brain-Computer Interfaces, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2520-2523, 2007.
DOI : 10.1109/IEMBS.2007.4352841

URL : https://hal.archives-ouvertes.fr/hal-00174738

Y. Li, . Pan, Z. Wang, and . Yu, A hybrid bci system combining p300 and ssvep and its application to wheelchair control, IEEE Transactions on Biomedical Engineering, 2013.

H. Cecotti, A Self-Paced and Calibration-Less SSVEP-Based Brain–Computer Interface Speller, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.2, pp.127-133, 2010.
DOI : 10.1109/TNSRE.2009.2039594

P. Martinez, H. Bakardjian, and A. Cichocki, Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm, Computational Intelligence and Neuroscience, vol.1, issue.4, 2007.
DOI : 10.1016/S1388-2457(00)00371-0

N. Kosmyna and F. Tarpin-bernard, Evaluation and Comparison of a Multimodal Combination of BCI Paradigms and Eye Tracking With Affordable Consumer-Grade Hardware in a Gaming Context, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, issue.2, pp.150-154, 2013.
DOI : 10.1109/TCIAIG.2012.2230003

R. Leeb, M. Lancelle, V. Kaiser, W. Dieter, G. Fellner et al., Thinking penguin: Multi-modal brain-computer interface control of a vr game, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, pp.183369117-128, 2013.

G. Pfurtscheller, Z. Brendan, G. Allison, C. Bauernfeind, T. Brunner et al., The hybrid BCI, Frontiers in Neuroscience, vol.43, 2010.
DOI : 10.3389/fnpro.2010.00003

G. Müller-putz, R. Leeb, M. Tangermann, J. Höhne, A. Kübler et al., Towards non-invasive hybrid brain-computer interfaces: framework, practice, clinical application and beyond, Proceedings of the IEEE, 2015.

A. Schlögl, C. Keinrath, . Zimmermann, . Scherer, G. Leeb et al., A fully automated correction method of EOG artifacts in EEG recordings, Clinical Neurophysiology, vol.118, issue.1, pp.98-104, 2007.
DOI : 10.1016/j.clinph.2006.09.003

S. Baillet, J. C. Mosher, and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal Processing Magazine, vol.18, issue.6, pp.14-30, 2001.
DOI : 10.1109/79.962275

L. Qin, L. Ding, and B. He, Motor imagery classification by means of source analysis for brain???computer interface applications, Journal of Neural Engineering, vol.1, issue.3, p.135, 2004.
DOI : 10.1088/1741-2560/1/3/002

M. Congedo, F. Lotte, and A. Lécuyer, Classification of movement intention by spatially filtered electromagnetic inverse solutions, Physics in Medicine and Biology, vol.51, issue.8, pp.1971-1989, 2006.
DOI : 10.1088/0031-9155/51/8/002

URL : https://hal.archives-ouvertes.fr/inria-00134948

D. J. Mcfarland, L. M. Mccane, S. V. David, and J. R. Wolpaw, Spatial filter selection for EEG-based communication, Electroencephalography and Clinical Neurophysiology, vol.103, issue.3, pp.386-394, 1997.
DOI : 10.1016/S0013-4694(97)00022-2

P. Herman, . Prasad, D. Mcginnity, and . Coyle, Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.16, issue.4, pp.317-326, 2008.
DOI : 10.1109/TNSRE.2008.926694

N. Brodu, A. Lotte, and . Lécuyer, Comparative study of band-power extraction techniques for Motor Imagery classification, 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp.1-6, 2011.
DOI : 10.1109/CCMB.2011.5952105

URL : https://hal.archives-ouvertes.fr/inria-00609161

C. Sannelli, T. Dickhaus, S. Halder, E. M. Hammer, K. Müller et al., On optimal channel configurations for SMR-based braincomputer interfaces, Brain Topography, 2010.

M. Arvaneh, C. Guan, K. K. Ang, and H. C. Quek, Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI, IEEE Transactions on Biomedical Engineering, vol.58, issue.6, pp.1865-1873, 2011.
DOI : 10.1109/TBME.2011.2131142

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. Müller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Processing Magazine, vol.25, issue.1, pp.41-56, 2008.
DOI : 10.1109/MSP.2008.4408441

H. Ramoser, J. Muller-gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, vol.8, issue.4, pp.441-446, 2000.
DOI : 10.1109/86.895946

M. Grosse-wentrup and M. Buss, Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction, IEEE Transactions on Biomedical Engineering, vol.55, issue.8, pp.1991-2000, 2008.
DOI : 10.1109/TBME.2008.921154

S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J. Haynes et al., On the interpretation of weight vectors of linear models in multivariate neuroimaging, NeuroImage, vol.87, pp.96-110, 2014.
DOI : 10.1016/j.neuroimage.2013.10.067

M. Grosse-wentrup, Understanding brain connectivity patterns during motor imagery for brain-computer interfacing, Advances in neural information processing systems (NIPS) 21, 2009.

B. Reuderink and M. Poel, Robustness of the common spatial patterns algorithm in the BCI-pipeline, 2008.

F. Lotte and C. T. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.355-362, 2011.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820

W. Samek, K. Kawanabe, and . Muller, Divergence-Based Framework for Common Spatial Patterns Algorithms, IEEE Reviews in Biomedical Engineering, vol.7, 2014.
DOI : 10.1109/RBME.2013.2290621

K. Ang, . Zy-chin, C. Wang, H. Guan, and . Zhang, Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b, Frontiers in Neuroscience, vol.6, 2012.
DOI : 10.3389/fnins.2012.00039

S. Lemm, B. Blankertz, G. Curio, and K. Müller, Spatio-Spectral Filters for Improving the Classification of Single Trial EEG, IEEE Transactions on Biomedical Engineering, vol.52, issue.9, pp.1541-1548, 2005.
DOI : 10.1109/TBME.2005.851521

D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. Mcfarland et al., A comparison of classification techniques for the P300 Speller, Journal of Neural Engineering, vol.3, issue.4, pp.299-305, 2006.
DOI : 10.1088/1741-2560/3/4/007

URL : https://hal.archives-ouvertes.fr/hal-00521054

U. Hoffmann, J. Vesin, and T. Ebrahimi, Spatial filters for the classification of event-related potentials, European Symposium on Artificial Neural Networks, 2006.

B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain–Computer Interface, IEEE Transactions on Biomedical Engineering, vol.56, issue.8, pp.562035-2043, 2009.
DOI : 10.1109/TBME.2009.2012869

G. Tsoumakas and I. Katakis, Multi-label classification: An overview, Int J Data Warehousing and Mining, pp.1-13, 2007.
DOI : 10.4018/jdwm.2007070101

G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. D?eroski, An extensive experimental comparison of methods for multi-label learning, Pattern Recognition, vol.45, issue.9, pp.3084-3104, 2012.
DOI : 10.1016/j.patcog.2012.03.004

T. Hastie and R. Tibshirani, Classification by pairwise coupling. The Annals of Statistics, pp.451-471, 1998.

E. L. Allwein, R. E. Schapire, Y. Singer, and P. Kaelbling, Reducing multiclass to binary: A unifying approach for margin classifiers, Journal of Machine Learning Research, vol.1, pp.113-141, 2000.

G. Thomas, G. Dietterich, and . Bakiri, Solving multiclass learning problems via error-correcting output codes, Journal of Artificial Intelligence Research, vol.2, pp.263-286, 1995.

M. W. Browne, Cross-Validation Methods, Journal of Mathematical Psychology, vol.44, issue.1, pp.108-132, 2000.
DOI : 10.1006/jmps.1999.1279

R. Tomioka and K. Müller, A regularized discriminative framework for EEG analysis with application to brain???computer interface, NeuroImage, vol.49, issue.1, pp.415-432, 2010.
DOI : 10.1016/j.neuroimage.2009.07.045

T. J. Bradberry, R. J. Gentili, J. L. Contreras, and . Vidal, Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals, Journal of Neuroscience, vol.30, issue.9, pp.3432-3437, 2010.
DOI : 10.1523/JNEUROSCI.6107-09.2010

M. Javier, L. Antelis, A. Montesano, N. Ramos-murguialday, J. Birbaumer et al., On the usage of linear regression models to reconstruct limb kinematics from low frequency eeg signals, PLoS One, vol.8, issue.4, p.61976, 2013.

E. Thomas, M. Dyson, and . Clerc, An analysis of performance evaluation for motor-imagery based BCI, Journal of Neural Engineering, vol.10, issue.3, p.31001, 2013.
DOI : 10.1088/1741-2560/10/3/031001

URL : https://hal.archives-ouvertes.fr/hal-00821971

E. Thomas, M. Dyson, and M. Clerc, An analysis of performance evaluation for motor-imagery based BCI, Journal of Neural Engineering, vol.10, issue.3, 2013.
DOI : 10.1088/1741-2560/10/3/031001

URL : https://hal.archives-ouvertes.fr/hal-00821971

R. Fazel-rezai, C. Bz-allison, . Guger, . Sellers, A. Kleih et al., P300 brain computer interface: current challenges and emerging trends, Frontiers in Neuroengineering, vol.5, issue.14, p.2012
DOI : 10.3389/fneng.2012.00014

F. Lotte, C. Larrue, and . Mühl, Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neuroscience, vol.7, issue.568, p.2013
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716

D. Mcfarland, J. Lm-mccane, and . Wolpaw, EEG-based communication and control: short-term role of feedback, IEEE Transactions on Rehabilitation Engineering, vol.6, issue.1, pp.7-11, 1998.
DOI : 10.1109/86.662615

N. E. Hauserand, T. M. Schwartz, J. R. Vaughan, E. W. Wolpaw, and . Sellers, A novel p300-based brain?computer interface stimulus presentation paradigm: Moving beyondrows and columns, Clinical Neurophysiology, vol.121, issue.7, pp.1109-1120, 2010.

J. Jin, B. Z. Allison, T. Kaufmann, A. Kübler, Y. Zhang et al., The Changing Face of P300 BCIs: A Comparison of Stimulus Changes in a P300 BCI Involving Faces, Emotion, and Movement, PLoS ONE, vol.42, issue.11, p.2012
DOI : 10.1371/journal.pone.0049688.t003

M. Perrin, E. Maby, O. Bertrand, and J. Mattout, A virtuous BCI loop: adaptive decision-making improves P300-spelling in two ways, Proceedings of the 6th International Brain-Computer Interface Conference, 2014.

E. Thomas, E. Daucé, D. Devlaminck, L. Mahé, A. Carpentier et al., CoAdapt P300 speller: optimized flashing sequences and online learning, Proceedings of the 6th International Brain-Computer Interface Conference, 2014.
DOI : 10.1109/ner.2013.6696120

URL : https://hal.archives-ouvertes.fr/hal-01103441

B. O. Mainsah, L. M. Collins, K. A. Colwell, E. W. Sellers, D. B. Ryan et al., Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study, Journal of Neural Engineering, vol.12, issue.1, 2015.
DOI : 10.1088/1741-2560/12/1/016013

D. B. Ryan, G. E. Frye, G. Townsend, D. R. Berry, S. Mesa-g et al., Predictive Spelling With a P300-Based Brain???Computer Interface: Increasing the Rate of Communication, International Journal of Human-Computer Interaction, vol.10, issue.1, pp.69-84, 2010.
DOI : 10.1016/S1388-2457(02)00057-3

K. Müller, M. Tangermann, G. Dornhege, M. Curio, and B. Blankertz, Machine learning for real-time single-trial EEG-analysis: From brain???computer interfacing to mental state monitoring, Journal of Neuroscience Methods, vol.167, issue.1, pp.82-90, 2008.
DOI : 10.1016/j.jneumeth.2007.09.022

P. Brunner, . Joshi, J. Briskin, . Wolpaw, G. Bischof et al., Does the ???P300??? speller depend on eye gaze?, Journal of Neural Engineering, vol.7, issue.5, p.56013, 2010.
DOI : 10.1088/1741-2560/7/5/056013

A. Furdea, S. Halder, D. J. Krusienski, D. Bross, F. Nijboer et al., An auditory oddball (P300) spelling system for brain-computer interfaces, Psychophysiology, vol.46, issue.Suppl 1, pp.617-625, 2009.
DOI : 10.1111/j.1469-8986.2008.00783.x

N. A. Gates, C. K. Hauser, and E. W. Sellers, A longitudinal study of p300 brain-computer interface and progression of amyotrophic lateralsclerosis, Foundations of Augmented Cognition. Directing the Future of Adaptive Systems, pp.475-483, 2011.

A. Riccio, L. Simione, F. Schettini, A. Pizzimenti, M. O. Maurizioinghilleri et al., Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis, Frontiers in Human Neuroscience, vol.7, 2013.
DOI : 10.3389/fnhum.2013.00732

E. W. Sellers, T. M. Vaughan, and J. R. Wolpaw, A braincomputer interface for long-term independent home use, Amyotrophic Lateral Sclerosis, 2010.

E. Aimee, . Schultz, A. Todd, and . Kuiken, Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities, PM R, vol.3, issue.1, pp.55-67, 2011.

A. Georgopoulos, A. Schwartz, and R. Kettner, Neuronal population coding of movement direction, Science, vol.233, issue.4771, pp.1416-1425, 1986.
DOI : 10.1126/science.3749885

R. Leigh, D. Hochberg, B. Bacher, N. Y. Jarosiewicz, J. D. Masse et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, issue.7398, pp.485372-375, 2012.

J. Del, R. Millán, . Galan, . Vanhooydonck, . Lew et al., Asynchronous non-invasive brain-actuated control of an intelligent wheelchair, Conf Proc IEEE Eng Med Biol Soc, pp.3361-3365, 2009.

T. Carlson and Y. Demiris, Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.42, issue.3, pp.876-888, 2012.
DOI : 10.1109/TSMCB.2011.2181833

G. Pfurtscheller, R. Gernot, J. Müller, H. J. Pfurtscheller, R. Gerner et al., ???Thought??? ??? control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia, Neuroscience Letters, vol.351, issue.1, pp.33-39, 2003.
DOI : 10.1016/S0304-3940(03)00947-9

M. Tavella, R. Leeb, R. Rupp, J. Del, and R. Millan, Towards natural non-invasive hand neuroprostheses for daily living, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp.126-129, 2010.
DOI : 10.1109/IEMBS.2010.5627178

M. Duvinage, T. Castermans, R. Jiménez-fabían, T. Hoellinger, M. Petieau et al., Human walk modeled by pcpg to control a lower limb neuroprosthesis by high-level commands, Journal of Systemics, Cybernetics and Informatics, vol.10, issue.3, pp.70-80, 2012.

L. Valery, . Feigin, H. Mohammad, R. Forouzanfar, . Krishnamurthi et al., ) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990- 2010: findings from the global burden of disease study 2010, Mohsen Naghavi, Christopher Murray, and Global Burden of Diseases , Injuries, and Risk Factors Study 2010, pp.383245-54, 2010.

S. Silvoni, A. Ramos-murguialday, M. Cavinato, C. Volpato, G. Cisotto et al., Brain-Computer Interface in Stroke: A Review of Progress, Clinical EEG and Neuroscience, vol.8, issue.2, pp.245-252, 2011.
DOI : 10.1056/NEJMoa0911341

N. Ward and L. Cohen, Mechanisms underlying recovery of motor function after stroke, Archives of Neurology, issue.12, pp.611844-1848, 2004.

G. Prasad, P. Herman, D. Coyle, S. Mcdonough, and J. Crosbie, Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study, Journal of NeuroEngineering and Rehabilitation, vol.7, issue.1, p.60, 2010.
DOI : 10.1186/1743-0003-7-60

D. Ander-ramos-murguialday, M. Broetz, L. Rea, . Läer, . Ozge-yilmaz et al., Brain-machine interface in chronic stroke rehabilitation: A controlled study, Annals of Neurology, vol.10, issue.1, pp.100-108, 2013.
DOI : 10.1002/ana.23879

D. Mattia, F. Pichiorri, M. Molinari, and R. Rupp, Brain Computer Interface for Hand Motor Function Restoration and Rehabilitation, Towards Practical Brain-Computer Interfaces, pp.131-153
DOI : 10.1007/978-3-642-29746-5_7

D. Coyle, J. Stow, K. Mccreadie, J. Mcelligott, and . Carroll, Sensorimotor modulation assessment and brain-computer interface training in disorders of consciousness. Archives of physical medicine and rehabilitation, pp.62-70, 2015.

D. Lulé, Q. Noirhomme, C. Sonja, C. Kleih, S. Chatelle et al., Probing command following in patients with disorders of consciousness using a brain???computer interface, Clinical Neurophysiology, vol.124, issue.1, pp.101-106, 2013.
DOI : 10.1016/j.clinph.2012.04.030

R. Gernot, C. Müller-putz, . Pokorny, S. Daniela, P. Klobassa et al., A single-switch bci based on passive and imagined movements: toward restoring communication in minimally conscious patients, International journal of neural systems, issue.02, pp.23-2013

C. Chatelle, S. Chennu, Q. Noirhomme, D. Cruse, M. Adrian et al., Brain???computer interfacing in disorders of consciousness, Brain Injury, vol.177, issue.1, pp.1510-1522, 2012.
DOI : 10.1016/S0165-0173(98)00056-3

J. Luauté, D. Morlet, and J. Mattout, Bci in patients with disorders of consciousness: Clinical perspectives, Annals of Physical and Rehabilitation Medicine, 2015.

J. Van-erp, F. Lotte, and M. Tangermann, Brain-Computer Interfaces: Beyond Medical Applications, Computer, vol.45, issue.4, pp.26-34, 2012.
DOI : 10.1109/MC.2012.107

URL : https://hal.archives-ouvertes.fr/hal-00688344

A. Nijholt, D. Plass-oude-bos, and B. Reuderink, Turning shortcomings into challenges: Brain???computer interfaces for games, Entertainment Computing, vol.1, issue.2, pp.85-94, 2009.
DOI : 10.1016/j.entcom.2009.09.007

D. Marshall, D. Coyle, S. Wilson, and M. Callaghan, Games, gameplay, and bci: The state of the art. Computational Intelligence and AI in Games, IEEE Transactions on, vol.5, issue.2, pp.82-99, 2013.

F. Lotte, J. Faller, C. Guger, Y. Renard, G. Pfurtscheller et al., Combining BCI with Virtual Reality: Towards New Applications and Improved BCI, Towards Practical Brain-Computer Interfaces, Biological and Medical Physics, pp.197-220
DOI : 10.1007/978-3-642-29746-5_10

URL : https://hal.archives-ouvertes.fr/hal-00735932

J. D. Bayliss, Use of the evoked potential p3 component for control in a virtual apartment, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, issue.2, pp.113-116, 2003.
DOI : 10.1109/TNSRE.2003.814438

E. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith et al., Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment, EURASIP Journal on Advances in Signal Processing, vol.2005, issue.19, pp.20053156-3164, 2005.
DOI : 10.1155/ASP.2005.3156

A. Kaplan, . Shishkin, . Ganin, A. Basyul, and . Zhigalov, Adapting the p300-based brain?computer interface for gaming: a review. Computational Intelligence and AI in Games, IEEE Transactions on, vol.5, issue.2, pp.141-149, 2013.

E. Maby, M. Perrin, O. Bertrand, G. Sanchez, and J. Mattout, Bci could make old two-player games even more fun: a proof of concept with connect four Advances in Human-Computer Interaction, 2012.

R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof et al., Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.4, pp.473-482, 2007.
DOI : 10.1109/TNSRE.2007.906956

R. Scherer, F. Lee, A. Schlögl, R. Leeb, H. Bischof et al., Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.675-682, 2008.
DOI : 10.1109/TBME.2007.903709

F. Velasco-´-alvarez and R. Ron-angevin, Free Virtual Navigation Using Motor Imagery Through an Asynchronous Brain???Computer Interface, Presence: Teleoperators and Virtual Environments, vol.5517, issue.4, pp.71-81, 2010.
DOI : 10.1109/TBME.2007.903709

J. Faller, G. Müller-putz, D. Schmalstieg, and G. Pfurtscheller, An Application Framework for Controlling an Avatar in a Desktop-Based Virtual Environment via a Software SSVEP Brain???Computer Interface, Presence: Teleoperators and Virtual Environments, vol.2007, issue.94561, pp.25-34, 2010.
DOI : 10.1016/S1388-2457(02)00057-3

F. Lotte, A. Van-langhenhove, F. Lamarche, T. Ernest, Y. Renard et al., Exploring Large Virtual Environments by Thoughts Using a Brain???Computer Interface Based on Motor Imagery and High-Level Commands, Presence: Teleoperators and Virtual Environments, vol.9, issue.4, pp.54-70, 2010.
DOI : 10.1016/j.patrec.2007.10.009

URL : https://hal.archives-ouvertes.fr/inria-00445614

J. Legény, A. Viciana-abad, and . Lécuyer, Toward Contextual SSVEP-Based BCI Controller: Smart Activation of Stimuli and Control Weighting, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, issue.2, 2013.
DOI : 10.1109/TCIAIG.2013.2252348

H. Bram-van-de-laar, D. Gurkok, M. Plass-oude-bos, A. Poel, and . Nijholt, Experiencing bci control in a popular computer game. Computational Intelligence and AI in Games, IEEE Transactions on, vol.5, issue.2, pp.176-184, 2013.

B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli et al., The Berlin Brain???Computer Interface: Non-Medical Uses of BCI Technology, Frontiers in Neuroscience, vol.4, 2010.
DOI : 10.3389/fnins.2010.00198

S. Haufe, J. Kim, I. Kim, A. Sonnleitner, M. Schrauf et al., Electrophysiology-based detection of emergency braking intention in real-world driving, Journal of Neural Engineering, vol.11, issue.5, p.56011, 2014.
DOI : 10.1088/1741-2560/11/5/056011

L. George and A. Lécuyer, An overview of research on passive braincomputer interfaces for implicit human-computer interaction, International Conference on Applied Bionics and Biomechanics, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00537211

A. Brouwer, M. A. Hogervorst, J. B. Van-erp, T. Heffelaar, P. H. Zimmerman et al., Estimating workload using EEG spectral power and ERPs in the n-back task, Journal of Neural Engineering, vol.9, issue.4, p.2012
DOI : 10.1088/1741-2560/9/4/045008

C. Mühl, C. Jeunet, and F. Lotte, EEG-based workload estimation across affective contexts, Frontiers in Neuroscience section Neuroprosthetics, vol.8, p.114, 2014.

B. Hamadicharef, H. H. Zhang, C. T. Guan, C. C. Wang, K. S. Phua et al., Learning EEG-based spectral-spatial patterns for attention level measurement, 2009 IEEE International Symposium on Circuits and Systems, pp.1465-1468, 2009.
DOI : 10.1109/ISCAS.2009.5118043

URL : https://hal.archives-ouvertes.fr/inria-00441412

C. Mühl, B. Allison, A. Nijholt, and G. Chanel, A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges, Brain-Computer Interfaces, vol.14, issue.2, pp.1-19, 2014.
DOI : 10.1109/ACII.2013.102

J. Frey, C. Mühl, F. Lotte, and M. Hachet, Review of the use of electroencephalography as an evaluation method for humancomputer interaction, Proc. of PhyCS, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00881756

A. Lecuyer, L. George, and M. Marchal, Toward Adaptive VR Simulators Combining Visual, Haptic, and Brain-Computer Interfaces, IEEE Computer Graphics and Applications, vol.33, issue.5, pp.18-23, 2013.
DOI : 10.1109/MCG.2013.80

URL : https://hal.archives-ouvertes.fr/hal-00934846

J. Frey, A. Appriou, F. Lotte, and M. Hachet, Estimating Visual Comfort in Stereoscopic Displays Using Electroencephalography: A Proof-of-Concept
DOI : 10.1007/978-3-319-22723-8_28

URL : https://hal.archives-ouvertes.fr/hal-01157890

D. Wobrock, J. Frey, D. Graeff, J. De-larivì-ere, J. Castet et al., Continuous Mental Effort Evaluation During 3D Object Manipulation Tasks Based on Brain and Physiological Signals, Proc. Interact, 2015.
DOI : 10.1007/978-3-319-22701-6_35

URL : https://hal.archives-ouvertes.fr/hal-01157896

E. Niedermeyer, Electroencephalography: basic principles, clinical applications , and related fields, chapter The normal EEG of the waking adult

F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K. Müller, Single Trial Classification of Motor Imagination Using 6 Dry EEG Electrodes, PLoS ONE, vol.12, issue.7, p.637, 2007.
DOI : 10.1371/journal.pone.0000637.s001

T. Oliver-zander, M. Lehne, K. Ihme, S. Jatzev, J. Correia et al., A dry eegsystem for scientific research and brain?computer interfaces, Frontiers in neuroscience, vol.5, 2011.

C. Guger, G. Krausz, Z. Brendan, G. Allison, and . Edlinger, Comparison of Dry and Gel Based Electrodes for P300 Brain???Computer Interfaces, Frontiers in Neuroscience, vol.6, 2012.
DOI : 10.3389/fnins.2012.00060

M. Duvinage, T. Castermans, T. Dutoit, . Petieau, . Hoellinger et al., A P300-based Quantitative Comparison between the Emotiv Epoc Headset and a Medical EEG Device, Biomedical Engineering / 765: Telehealth / 766: Assistive Technologies, 2012.
DOI : 10.2316/P.2012.764-071

D. Heingartner, Mental block, IEEE Spectrum, vol.46, issue.1, pp.42-43, 2009.
DOI : 10.1109/MSPEC.2009.4734313

C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser et al., BCI Software Platforms, Towards Practical Brain-Computer Interfaces, pp.303-331, 2013.
DOI : 10.1007/978-3-642-29746-5_16

URL : https://hal.archives-ouvertes.fr/hal-00939019

G. Schalk, D. J. Mcfarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, BCI2000: A General-Purpose Brain-Computer Interface (BCI) System, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1034-1043, 2004.
DOI : 10.1109/TBME.2004.827072

Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby et al., OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain???Computer Interfaces in Real and Virtual Environments, Presence: Teleoperators and Virtual Environments, vol.2008, issue.3, pp.35-53, 2010.
DOI : 10.1016/j.patrec.2007.10.009

URL : https://hal.archives-ouvertes.fr/hal-00477153

R. Gernot, C. Müller-putz, F. Breitwieser, R. Cincotti, M. Leeb et al., Tools for brain-computer interaction: a general concept for a hybrid bci, Frontiers in neuroinformatics, vol.5, 2011.

F. Lotte, Brain-computer interfaces for 3D games, Proceedings of the 6th International Conference on Foundations of Digital Games, FDG '11, pp.325-327, 2011.
DOI : 10.1145/2159365.2159427

URL : https://hal.archives-ouvertes.fr/inria-00591574

D. Krusienski, M. Grosse-wentrup, F. Galán, . Coyle, . Miller et al., Critical issues in state-of-the-art brain???computer interface signal processing, Journal of Neural Engineering, vol.8, issue.2, p.25002, 2011.
DOI : 10.1088/1741-2560/8/2/025002

J. Mattout, Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective, Frontiers in Human Neuroscience, vol.6, issue.114, p.2012
DOI : 10.3389/fnhum.2012.00114

C. Brunner, N. Birbaumer, B. Blankertz, C. Guger, A. Kübler et al., BNCI Horizon 2020: towards a roadmap for the BCI community, Brain-Computer Interfaces, vol.4, issue.1, pp.1-10
DOI : 10.1007/978-3-642-29746-5_7

F. Nijboer, J. Clausen, Z. Brendan, P. Allison, and . Haselager, The Asilomar Survey: Stakeholders??? Opinions on Ethical Issues Related to Brain-Computer Interfacing, Neuroethics, vol.8, issue.2, pp.541-578, 2013.
DOI : 10.1007/s12152-011-9132-6