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Figure 1: Given a measured material, our algorithm produces a physically sound microfacet BRDF that closely matches the
original appearance, and allows for artistic authoring.

Abstract

We introduce a novel tting procedure that takes as input an arbitrary material, possibly anisotropic, and au-
tomatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of
microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples.
We show that the eigenvector associated to the largest eigenvalue is always the only solution to this problem,
and compute it using the power iteration method. This approach is straightforward to implement, much faster to
compute, and considerably more robust than solutions based on nonlinear optimizations. In addition, we provide
simple conversion procedures of our ts into both Beckmann and GGX roughness parameters, and discuss the ad-
vantages of microfacet slope space to make our ts editable. We apply our method to measured materials from two
large databases that include anisotropic materials, and demonstrate the bene ts of spatially varying roughness on
texture mapped geometric models.
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1. Introduction

Material modeling is a fundamental problem in computer
graphics. In physically based rendering applications, a ma-
terial is described by a bidirectional re ectance distribution
function, or BRDF for short [NRH77]. For materials that
exhibit specularities ranging from smooth (e.g., plastics) to
rough (e.g., metals), the BRDF is typically a derivative of
microfacet theory [TS67]. Microfacet BRDFs are driven by
physical parameters such as a microfacet normal distribu-
tion, roughness, anisotropy, etc. This makes the editing of

their parameters to achieve a speci c appearance a daunting

task. To help with this process, microfacet BRDF tting may
be applied to measured materials.

Existing microfacet-based tting procedures may be clas-
si ed in two categories. On the one hand, we nd methods
that typically introduce a new parametric microfacet normal
distribution, and rely on sophisticated optimizations to t its
parameters [NDMO5, LKYU12, BSH12]. Although this ap-
proach has been used successfully to t measured materi-
als, current methods suffer from two main problems. First,
optimizations are not guaranteed to converge to a valid so-
lution. Second, available parametric models are isotropic
and single lobed, which limits the range of materials that
they can t accurately. On the other hand, we nd meth-
ods that extract an arbitrary microfacet normal distribution
into a table [AP07, WZTO08]. While this approach is con-
siderably more general than the ones from the rst category,
as it naturally supports complex lobes and anisotropy, ex-
isting methods are not entirely satisfactory. Indeed, current
methods either rely on crude approximations for visibility
effects [APQ7], or require a complex implementation involv-
ing sophisticated optimizations [WZ108].

In the following sections, we introduce a new tabula-
tion strategy that takes an arbitrary material as input, and
extracts a microfacet normal distribution from backscatter-
ing con gurations, as well as a Fresnel function. Our ap-
proach combines the simplicity of the method of Ashikmnin
and Premo e [APOQ7], i.e., it is free from sophisticated op-
timizations, while retaining an accurate model for visibil-
ity effects. Speci cally, we use the Smith microfacet visi-
bility model [Smi67], which is very popular in the indus-
try [HMD 14]. For real-time rendering applications that re-

quire analytic models such as video games, we also provide

straightforward routines to convert our ts to Beckmann and
GGX microfacet roughness parameters [WMLTO7]. Finally,
we discuss how implementations may take advantage of mi-

crofacet slope space to precompute importance sampling ta-

bles that support spatially varying roughness for our tted
materials.

We rstrecall in Section 2 the fundamentals of microfacet
theory and how both roughness and anisotropy can be ef -
ciently controled in slope space. Next, we give an overview
of our method in Section 3. We then proceed in Section 4
to show how the problem of recovering a microfacet normal

distribution or, equivalently, a microfacet slope distribution,
may be transposed into an eigenvector problem. We show

that the largest eigenvector is always the solution to this

problem, and compute it with the power iteration method.

We evaluate the performance of our implementation in Sec-
tion 5, and discuss conversion into Beckmann and GGX

roughness parameters. Finally, we conclude, discuss limita-
tions, and present future perspectives in Section 6.

2. Preliminaries
2.1. Microfacet Theory

Microfacet theory [TS67] is a framework that models the
re ectance of rough materials. It describes the BRDF as a
global response of a microscopic surface composed of mi-
crofacets that act as Fresnel mirrors when radiated by light
rays. Under the assumption that single-bounce mirror re-
ection dominates on the microsurface, the response of the
BRDF becomes directly proportional to the probability of
nding the visible and illuminated microfacets whose orien-
tations form a mirror-like re ection between given viewing
and illumination directions. To express this measure math-
ematically, we use the coordinate system illustrated in Fig-
ure 2. Lettingfr denote the BRDF) the viewing direction,

i the illumination direction associated to the in nitesimal
solid angledw;, andh = (i + 0)=ki + ok the halfway vec-
tor, the BRDF takes the analytic form [WMLTO7]
F(ga) D(h) G(i:0) O

4 cogjj cOSqo

The angle qq arccog¢i h) 2 [O;p=2] is known as
the difference angle in the BRDF parameterization of

Rusinkiewicz [Rus98], and we follow standard computer
graphics notations for the various tern#s:2 [0;1] is the

fr(i;0) =

Figure 2: Coordinate system and relevant quantities:
i, light source Cartesian unit vector associated to an in-
nitesimal solid angle av;; o, viewer Cartesian unit vec-
tor; gx (k = i;0), elevation angle of unit vectok =
(singy cosf i; singy sinf ; cosgy)".

¢ 2015 The Author(s)

Computer Graphics Forunt 2015 The Eurographics Association and John Wiley & Sons Ltd.



Dupuy, Heitz, lehl, Poulin, Ostromoukhov / Extracting Microfacet-based BRDF Parameters with Power Iterations

microfacet Fresnel ternD O the microfacet normal dis- ulation of such variates simply requires the computation of
tribution function (NDF) of the microsurface, a@i2 [0; 1] two quantile functions, as we show in Appendix A.
the geometric attenuation factor (GAF) of the microsurface

due to masking and shadowing effects. 2.3. Microfacet Roughness

In current state-of-the-art models, the GAF is given by the Another bene t of working with slopes is that, in slope

correlated bistatic Smith shadowing function [HMD]. space, control over roughness gets a precise physical inter-
This model ensures consistency between the projected area pace, 9 9 P phy:

. . . T pretation: it is inversely proportional to horizontal scaling
of microfacets and the cosine law with respect to directions : L
: N . transformations. This is intuitive: the more the slopes are
o andi [Heil4]; it may be written as

stretched, the smoother the surface. Conversely, the more
G (i) Ga(0) . the slopes are contracted, the rougher the surface. If we let
Gy(i)+ Gi(0) Gy(i) G1(0)’

ax> 0 anday > 0 respectively denote microfacet roughness
whereG; 2 [0; 1] denotes the Smith monostatic shadowing in the x andy directions, then we may de ne a microfacet
function [Smi67, Heil4]

G(i;0) = @)

NDF with explicit control over roughness and anisotropy as

% 9 sefan. ©

co qs -
Gy(k) = R GO0k . (3) D(h;ax;ay)= P ax’ay  aady

w, KnD(h) dwp,
Note that this expression d still satis es Equation (4).
Furthermore, if we have an importance sampling strategy
for P, then we can easily adapt it to roughness by scaling
the variate byax anday. We refer to this property as rough-
2.2. Microfacet Slopes ness invariance. It may be shown ti@t is also roughness

invariant [Heil4].
As is made particularly apparent in Equations (1) and (3), [Hei14]

the microfacet NDF plays a major role in the construc-
tion of a microfacet BRDF. The microfacet NDF is a direc- 3. Overview
tional distribution de ned on the hemisphere, and is normal-
ized such that its projection onto the tangent plane has unit
area [WMLTO7], i.e.,

z

Note that we use the notatidih to express a clamped dot
product, i.e.kh = max0;k h).

With the state-of-the-art microfacet theory at hand, we may
now move on to the problem of retrieving a microfacet
BRDF from an input material. Note that, in the tting
D(h) cosgp dwp = 1: (4) scheme that we _introgluce next, we focus qn retrie\P_ng
A rather thanD. While this approach does not impact tting
performance, i.e., retrieving eith€ror D with our method
will produce the same ts, tabulating directly allows us to
perform offset and interpolated table lookups in our imple-
mentation, which we exploit to perform roughness manip-
ulation. We then precomput®; and the quantile functions

A directional distribution is not straightforward to manipu-
late or design. In contrast to normals, slopes are much easier
to study, as they live in thR? plane. In thé\: set, normals

and slopes are linked through the bijection

¢ _ tangpcosfh=% . ., 2. used for importance sampling into tables.
h= tangpsinfp = ¥y h2 R ®)
. ) n ok We also differ from previous tting methods in two ad-
whose inverse is 5 3 ditional aspects. First, our tting scheme does not attempt
1 Zn to retrieve a Lambertian term; it extracts microfacet terms
h=g———4 {#5; h2W: (6) exclusively. As such, we can not recover mixtures of both
iﬁ+ y§+ 1 1 models. Second, we do not build a microfacet distribution

) ) ) for each color channel. Originally, this approach was moti-
From this relation, we may de ne a microfacet NDF from a  yated by our desire to enforce physical soundness: micro-

bivariate slope probability distribution functidd 0 such facet BRDFs are based on the geometric optics approxi-
that mation, and creating per wavelength microscopic surfaces
D(h) = P(h) sec“qh: @) makes no sense. In practice, we noted that our ts had suf -

cient quality with this restriction, and that tting errors were
The secant term is the Jacobian that converts the measure ofgue to limitations of the microfacet theory itself. Nonethe-
microfacet slope probability into a microfacet normal distri- less, nothing prevents our tting to apply to each color chan-
bution [Heil4]. As long a® is a normalized PDF, i.e., nel.
z

P(h)dh = 1; (8) Finally, we also mention that iP is isotropic, then we
R? can perform importance sampling according to the distribu-
Equation (4) holds. The introduction of such a PDF is par- tion of visible slopes [HD14]. This strategy works for any
ticularly convenient for importance sampling, since the sim- isotropic material.

C 2015 The Author(s)
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4. Microfacet Extraction the form of the kernel is not known in advance due to the
input materialfr, so we solve this equation numerically by

discretizing Equation (14) with a quadrature rule. Letting
In order to retrieve a microfacet slope distribution from an  denote thej-th quadrature rule weight arig= 1;  ;N, we

input material, we are going to use a simplied form of gptain the new relation

Equation (1). Speci cally, we focus on backscattering con- N

gurations, which reduces the dimensionality of the BRDF, FoP(8i) = & w;jK(oi;hj) P(R)); (16)
and simpli es the Fresnel term to a constant. Indeed, in such i=1

con gurations, we have = o= h, as well asgqq = 0; for

convenience, we writgy = F(0). Equation (1) predicts that ~ Where 01 = hy; 2i5N = hy are the (slope) quadrature
the BRDF takes the form points, located irR<. Now, lettingp denote the discretized

— (DAY DA ;
FoD(0) G(0:0) PDF vectop = (P(81); ;P(0n))" andK the matrix

4.1. Backscattering Con gurations

fr(0;0) = 10 2 3
(00 = g o a (10) wik(ophy)  waK(osihw)
However, this is not entirely accurate because the GAF, i.e., K = 2 X - : % : a7
G, overestimates shadowing effects. When o, shadow- i ' :
! . ’ wy K(on;h wy K(on;h
ing and masking are fully correlated, and the GAF should 1K (onihy) N K{on:hn)
degenerate into the monostatic form [Heil4] Equation (16) rewrites as the eigenvalue problem
G(0;0) = G1(0): (11) Fop=K p: (18)
The accurate form of the GAF term leads to the microfacet This result shows that the problem of retrieving a microfacet
backscattering equation slope PDF given an input materil translates into nding
FoD(0) G1(0) | an eigenvectop whose components are all nonnegative.

fr(0;0) = (12)

4co2qo
With this equation at hand, we may now proceed to the ex- 4 3 Resolution via Power Iterations

traction of a microfacet slope distribution, i.€, given an _ _ _

input materialf;. Note that the inability of Equation (2) to ~ Since the entries of the matrik are all nonnegative, the
degenerate into Equation (11) is known as the hotspot prob- Perron-Frobenius theorem [Per07, Frol12] states that it al-
lem, and remains an open problem. In practice, we use Equa-Ways has a unique eigenvectpwhose values are all non-
tion (11) for tting purposes and Equation (2) for render- negative. It is thus a valid solution for the microfacet slope
ing. Our results thus slightly overestimate occlusion effects distributionP. By solving Equation (18), we therefore have

in hotspot con gurations by the factoe={2  Gy) 2 [0:5; 1]. the guaranteedability to compute a valid microfacet slope
PDF from an input material. Furthermore, the theorem states

that this eigenvector is associated to the largest eigenvalue
of the matrix. As such, we can compute it straightforwardly
In our microfacet BRDF tting problem, we are given an  with the power iteration method.

input materialf, and asked to extract a microfacet Fresnel
term and a microfacet slope distribution. As a rst step to-
wards this direction, we swap the prodigtD and f; to the
other side of the equality in the microfacet backscattering
equation, i.e., Equation (12). This yields

4.2. Eigensystem Construction

The power iteration method is based on the property that
the eigenvector associated to the largest eigenvalue of a ma-
trix emerges after successive multiplications with a vector.
In our implementation, we initializp=(1; ; 1)t, and suc-
cessively multiply it byK. In practice, we use only four suc-
cessive multiplications, which has turned out to be suf cient
for all our test cases. Once the vector has been determined,

Next, by replacingd andG; in Equation (13) by their re- we build a continuou; PPF by Iipearly inte.rpolating the val-
spective de nitions, i.e., Equation (7) and Equation (3) re- UeS ofp, and normalize it to satisfy Equation (8). We store

spectively, we get an equation for the microfacet slope PDF e result in a table, which completes the extractiorPof
Algorithm 1 provides pseudocode for our method.

411(0;0) cof o .

Fo D(O) = Gl(O)

(13)

FoP(8) = z K(o; h) P(R) dwp,; (14) With the extraction process & complete, we can now
W evaluate the microfacet NDF, i.®, extracted from the input
where material thanks to Equation (7). It follows from Equation (3)
4 that we can also compute the Smith te@qn At this point,
K(o;h) = 4fr(0;0) cos’ gooh sec gp: (15) we can already create a fully functional microfacet BRDF
Equation (14) is not trivial to solve: in the mathematics liter- Whose microfacets act as “ideal” mirrors, i.e.,
ature, it belongs to the family of multivariate Fredholm equa- N D(h) G(i:0)
tions of the second kind with kernkl [PM12]. In our case, fria (i:0) = Zcos costo” (19)

¢ 2015 The Author(s)
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Algorithm 1 ExtractP

function EXTRACT_P(fr;N)
for eachi;j 2 [1;N] do

. Build kernel matrix

Kij  wj4fr(0;;0) cos'do oihj sec g,

end for

P& 1)

for0 i< Mdo . Power iterations (we sél = 4)
p Kp

end for

P normaliz¢p)

end function

Note that this equation is a special case of Equation (1),
whereF(qq) = 1 for anyqq. We can thus turn to the problem
of retrieving the microfacet Fresnel term in order to com-
plete the tting process.

4.4, Fresnel Extraction

In order to extract the Fresnel term, we compute for each

color channel the average ratio between the input material

and Equation (19) over all possildg con gurations, i.e.,
fr (i;0)
fr;id(i;o)
where we use the notatide[xjy] to denote the expectation

of variablex over the domain that satis es conditign Al-
gorithm 2 provides pseudocode for our method.

F(ad)= E jih=cosqqy ; (20)

Algorithm 2 ExtractF
function EXTRACT_F(fr, frig)
for qq 2 [0;p=2] do
F(ag) O
N O
for f4;fh2[0;2p];an 2 [0;p=2] do
i from_half_diff(h;d)
o reect(i;h)
F(aa) F(aa)+ fr(i;0)=fria(i;0)
N N+1
end for
F(da)
end for
end function

F(da)=N

The main advantage of our approach is that it is fully auto-
matic. It is very accurate when the behavior of the input ma-
terial accords to microfacet theory, i.e., whénis roughly
equal to Equation (1). When this condition does not hold,
our algorithm will propagate the tting errors into the Fres-
nel term. Such situations will arise for, e.g., materials with

directionally dependent albedo such as certain fabrics or car

paints. In such cases, the extracted behaviér differs sig-
ni cantly from what is predicted by the Fresnel law, and the

C 2015 The Author(s)

term should be regarded as a residual function instead of an
actual Fresnel function.

4.5. Optimization: Eigensystem Construction for
Isotropic Materials

Although our tting process is already complete, we intro-
duce here an optimization for the extractionRothat works
for isotropic materials. If the input material is isotropic, then
the microfacet NDF, i.eD, depends only on the elevation
angleq. It follows from Equation (7) that the microfacet
slope PDF is also isotropic, which implies that it may be ex-
pressed as a 1D radial function

P(h) = g(an):

In such cases, the problem of retrieving the 2D functon
i.e., Equation (14), simpli es to that of nding the 1D func-
tion g. This problem also translates into a (univariate) Fred-
holm equation of the second kind

Z

(21)

p=2
Fogdo) =~ K%doiom olan) dan;  (22)
with kernelK©®
0 Za .
K™(Qo; th) = . K(o;h) singy, df p: (23)

We provide the derivations that lead to this particular result
in Appendix B. Note that the choice of the azimuthal angle
fo to fully de ne o is arbitrary in Equation (23). As for the
general case, Equation (22) may be expressed as an eigen-
value problem of the form

Fop= K° p°, (24)
where pO: (9(doy):  :9(0oy))t. Since the entries of the
matrix K° are also nonnegative, we can also solve Equa-
tion (24) with the power iteration method. In practice, we
also use four successive multiplications to recover the solu-
tion po. Algorithm 3 provides pseudocode for this special-
ized method.

Algorithm 3 Extract Isotropid®
function EXTRACT_P_IsoTRoPIq fr; N)
fo O . The choice is arbitrary here
for eachi;j 2 [1;N] do . Build kernel matrix
K& &P wiK(o;;hj) singn, df
end for
P (1
for0 i< Mdo
p° KO p°
end for
P normalizép9
end function

. Power iterations (we sédl = 4)

Computer Graphics Forunt 2015 The Eurographics Association and John Wiley & Sons Ltd.
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SGD [BSH12] Ours: Tabulated

Ours: GGX Ours: Beckmann

Figure 3: Mean delta-E difference image on the entire MERL database [MPBMO3].

5. Implementation and Results
5.1. Precomputations

In our implementation, we rely exclusively on rectangle

from the reported numbers, the error is small (less than 1%).
We attribute this error to the quadrature rules that we use to
solve integral Equations (14) and (22), and consider it as the
minimum error produced by our algorithms. The anisotropic

quadrature rules to compute our integrals. This includes the case produces the same amount of relative error.

microfacet slope PDF, i.ew; = = wy = 1=N. We store

one RGB table for the microfacet Fresnel, and three scalar-

valued 1D (resp. 2D) tables f&, G1, and the quantile func-
tion for isotropic (resp. anisotropic) materials. The dimen-

sions of the tables depend on the number of samples we eval-

uate from the material in the elevation and azimuthal direc-
tions. In the isotropic con guration, the number of samples
is equal toN. In this case, our representation stores (includ-
ing Fresnel and the other tablesY 3 3N = 6N scalar val-
ues. In the anisotropic con guration, the number of samples
is equal toN = Ny Ny, whereNg andN; respectively de-

a | 001] 002 | 005 | 015
dmax | 0:03 | 0:004 | 0:002 | 0:0005
Table 1. Maximum relative error in backscattering between

Beckmann BRDFs with varying roughness and their respec-
tive ts computed with our algorithm.

Fitting Isotropic Materials We proceeded to a tting com-
parison against the state-of-the-art parametric model, re-
ferred hereafter as SGD, of Bagher et al. [BSH12] using the

note the number of elevation and azimuthal samples used to MERL material database of Matusik et al. [MPBMO3]. To

evaluate the re ectance of the input material. In this case, our

compute our ts, we initialized our algorithm witN = 90

representation stores (including Fresnel and the other tables)and made sure that the entire backscattering data was sam-

3Ng (1+ Nt) scalar values.

5.2. Online Computations

We implemented BSDF plugins in the Mitsuba ren-
derer [Jak10] to use our microfacet model. Our plugins im-
plement the functionevalandsampling which are called by
Mitsuba's Monte Carlo integrator. Theval function evalu-
ates Equation (1) using the precomputed tablesP{oB;,
andF (we getD from P with Equation (7)). Thesample
function calls the precomputed quantile functié@sandQ,

as explained in Appendix A. Because our tables are rough-
ness invariant, we produce a wide variety of roughness ef-
fects on the y by scaling the lookup parametersdyand

5.3. Experiments

Unit Testing We validated our microfacet slope PDF ex-
traction by testing our algorithms against an analytic
model of Equation (12) based on a Beckmann distribu-
tion [WMLTOQ7] with varying roughness. Table 1 shows the
maximum relative errors we measured during our experi-
ment in the isotropic case, usidgj= 360. As can be seen

pled only once. At 32-bit oating-point precision, each of
our ts requires 2.1 KB of memory. We provide the ex-
haustive tests in our supplemental document, which also in-
cludes more detailed numerical analysis as well as delta-E
difference images. Figure 6 shows some comparative ren-
derings of both methods as well as with the ABC microfacet
model [LKYU12] against the reference for a few materials,
using 512 samples per pixel. Notice that for the-layer-
gold and changing-paintlmaterials, the SGD tting opti-
mization failed and resulted in awed images. This example
emphasizes one of the strengths of our tting method over
optimization techniques, since, as we showed in the previous
section, our ts can notresultin such failures. Note that these
materials were not the only ones affected by this issue in the
database. In general, we believe our method is qualitatively
superior to SGD and on par with ABC for metallic materials.
Differences with SGD and ABC are most visible in Figure 6
at grazing angles. For most other materials in our supple-
mental document, our ts are either on par or slightly below
the SGD model. While our observation is mainly qualitative,
it is also in agreement with the average delta-E difference
image of our supplemental document, which is illustrated in
Figure 3.

¢ 2015 The Author(s)
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Worse Isotropic Fitting For certain isotropic materials of
the MERL database, we noticed that our method could pro-
duce ts that were qualitatively less satisfying than previ-
ous work. Figure 6 carries a few such materials, which can
also be found in our supplemental document. In this partic-
ular gure, our t of the alumina-oxidematerial is worse
that those of the ABC and SGD models. We see two rea-
sons why our method would produce less satisfying ts.
The rst reason is due to the input material itself: since
our method extracts the microfacet NDF from backscat-
tering data exclusively, it is highly sensitive to the qual-
ity of such con gurations. Thus, if backscattering is poorly
acquired, then our method will fail at reproducing the in-
put faithfully. Such scenarios are plausible for tlemina-
oxidematerial of Figure 6, as our t results in altered high-
lights (our t appears too matte). The second reason is due
to our BRDF model: our model is based on a microfacet
BRDF model alone and, as such, is limited to material be-

haviors that are close to what is predicted by the equations.

Layered and/or composite materials (eaumina-oxidein
Figure 6) as well as strong Lambertian component (e.g.,
some paints and acrylics), tend to be qualitatively less sat-
isfying than the SGD ts in our supplemental document.
For isotropic materials with poor backscattering data and/or
strong Lambertian components, tting methods based on
optimizations [NDMO05, LKYU12,BSH12, WZT08] should
also perform better than our method in general. As for lay-
ered and color changing materials (eghanging-paintlin
Figure 6), they remain a challenging open problem.

Fitting Anisotropic Materials Our method also supports
anisotropic materials. To review its performance, we tested

some highly anisotropic materials from the recent database

of Filip and Vavra [FV14]. To compute our ts, we initial-
ized our algorithm withqy = 90 andfy = 90. At 32-bit
oating-point precision, each of our ts requires 6 KB of

@) (b)
Figure 4: Multiple material design on a production as-
set. (a) Measured BRDFs. (b) Our tted microfacet BRDFs

controled by a roughness texture map. Model courtesy of
LAGOA.

We believe such timings make our method much faster than
previous work.

memory. Our results were computed using 512 samples per Figure 5: Fitting timings (in seconds) of our algorithms as

pixel and are illustrated in Figure 7. For each material, the
lobe of the BRDF (and hence the microfacet NDF) is cap-
tured accurately. Note however that our t of tfebric106
material failed at reproducing the directionally dependent
albedo exhibited by the reference.

5.4. Computational Performance

Speed Our tting algorithms are very fast: it takes us less
than 1 second to t an isotropic material from the MERL
database of Matusik et al. [MPBMO03], and less than 20 sec-
onds for an anisotropic material of Filip and Vavra [FV14].
Naturally, tting performance depends on the resolution of
the tables, i.e., oN. We measured the impact of such a fac-
tor for both isotropic and anisotropic algorithms. Results are
plotted in Figure 5, where the timings include the compu-
tations of the slope PDF, the Smith term, the quantile func-
tions, and the Fresnel term on an Intel@Hz Core i5 CPU.

C 2015 The Author(s)

a function of the number of input material evaluations.

Memory Because our representation is roughness invariant,
it allows us to create a multitude of materials at constant
memory cost. As an example, we rendered the scenes illus-
trated in Figures 1 and 4 using 512 samples per pixel and a
few KB of memory. Such rendering con gurations are only
possible with slope space tables. Otherwise, the per-pixel
sampling rate and/or memory consumption to store impor-
tance sampling tables should be increased. For roughness
mapped models such as ones shown in Figure 4, where the
number of different materials is very high, such approaches
would have been particularly impractical. Alongside ana-
lytic microfacet BRDF models, we believe our tabulation
strategy is the rst to support such complex con gurations
trivially.

Conversion to Analytic BRDFs Although our memory
footprint is constant per tted material, some applications

Computer Graphics Forunt 2015 The Eurographics Association and John Wiley & Sons Ltd.
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might not be able to afford the storage of precomputed ta- [DHI 13] Dupuy J., HEITz E., IEHL J.-C., ROULIN P.,
bles. This is typically the case in real-time rendering con- ~ NEYRET F., OSTROMOUKHOV V.: Linear ef cient antialiased
texts, where analytic microfacet BRDF models such as the g'?ﬁ?\fezgig; aznldlff_i‘itagce mappingCM Trans. Graph. 32
GGX or Beckmann models are a necessity. In Appendix ¢, [Fro12] .FROBE,NIUSIG : dber matrizen aus nicht negativen ele
we show that our tabulated microfacet slope PDF can be - -
converted straightforwardly to either GGXpor Beckmann menten, sB. Preuss. Akad. Wiss. Berl(1912), 456-477. 4
roughness parameters using slope moments. With such an-[FV14l FiLip J., VAVRA R..  Template-based sampling of
alytic microfacet models, only the Fresnel table needs to be 22'57022%%)851[1;30? "i%m' Graph. Forum (Paci ¢ Graphics)
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pared to our tabulated representation, we placed some ren-[HDbl4] g E"Szgé E. D E;’Ng': [Epprtan;:e's%Tplmg m;cg’tfacet'
derings obtained with the analytic models next to our tabu- Ei?ggraphicsssusmg oe IstUtI?jn 18014, EGSR. no. 10: _
bl k ymposium on Render{2614), EGSR, pp. 103
lated ts in Figure 6. We noticed that the GGX model per- 112.3
forms generally better than the Beckmann model (see also [Heil4] HeiTz E.: Understanding the masking-shadowing func-
Figure 3), which is in agreement with previous observa-  tion in microfacet-based BRDFgournal of Computer Graphics

tions [TR75, WMLTOQ7, Bur12)]. Note that we also incorpo- Techniques (JCGT), 2 (2014), 32-91. 3,4, 9
rated the analytic models in our detailed tting analysis pro- [HMD 14] HiLL S., MCAULEY S., DUPUY J., GOTANDA Y.,
vided in our supplemental document. HEITZ E., HOFFMAN N., LAGARDE S., LANGLANDS A.,

MEGIBBEN I|., RAYANI F., DE ROUSIERSC.: Physically based

. shading in theory and practice. 8iIGGRAPH Coursef014),
6. Conclusion ACM, pp. 23:1-8. 2, 3
We introduced a novel method to t a microfacet BRDF [Jak10] &koB W.: Mitsuba renderer, 2010. http://www.mitsuba-
model to an input material. Compared to previous ap-  rendererorg. 6
proaches, our method is considerably faster, more robust, [LKYU12] L 6w J., KRONANDER J., YNNERMAN A., UNGER
and more general. By working in microfacet slope space, we  J.: BRDF models for accurate and ef cient rendering of glossy
also provide simple and effective control over roughness. We surfacesACM Trans. Graph. 311 (2012), 9:1-14. 2, 6,7, 10
implemented our algorithms in a C++ library that is avail- [MPBMO3] MATUsSIk W., PRISTER H., BRAND M., MCMIL-
able on GitHu¥. Our code allows one to reproduce all our LAN L.: A data-driven re ectance modelACM Trans. Graph.

. . . 22,3 (2003), 759-769. 6, 7, 10

tting results. We hope this will encourage more research )
in the direction of tting physically based materials, as there [Nzr'\]"ﬁjlis 2‘%%?’&23;@“‘%2& hlﬂzﬁTrgng;px\iléé E’;’;%'c’;;ﬁj”;qa'on
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the way we extract the Fresnel term needs to be improved. [NRH 77] NICODEMUSF., RCHMOND J., HSIA J., GNSBERG
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Appendix A: Importance Sampling

We importance sample our microfacet BRDFs with the tech-
nique described by Walter et al. [WMLTOQ7]. Our tech-
nique differs only in the sampling of the microfacet nor-
mal h from the tabulated data. To samgle we rst pro-
duce slope variatels = ( %,; ;) that are distributed accord-
ing to P as follows. LetP; O denote the marginal PDF
Pi(%) = g P(%n;¥h) d¥i,. The PDFsP and Py are linked
through the relation
P(%n; ) .
P1(%)
where P, 0 is the PDF ofyy conditioned onxg. Let
F1 2 [0;1] andF, 2 [0; 1] respectively denote the cumulative
distribution function ofP; andP;, i.e.,
Zg
F1(%n) =
Zy,
Fa(¥hj%n) = P2(¥1%n) dY;

P(%n; ¥h) = P1(%n) P2(%hi%n) ) Pa(Yhi%n) =

PL(X) d%;

andQ; = F; andQ, = F, * their respective quantile func-
tions. Given realizationsiy; up 2 [0;1] of two independent
uniform variates, the variates obtained by the quantile trans-
formation

Q1(uy)
Q2(u2jQ1(uyp))

are distributed according . We storeQ; andQ, in a 1D
and a 2D table, respectively. We compute the nottrfabm
h with Equation (6).

h=

Appendix B: Proof for the Isotropic Case

We show here how we arrived at Equation (22). We start
from Equation (14) and apply Equation (21)
Zz

Fod(do) = w K(o;h) g(an) dw:

We then proceed with a few simple algebric manipulations,
and Equation (22) naturally emerges
Fog(qo) = K(o;h) g(an) sindn dandf
Zp2 Z2p _
K(o;h) singndf  g(an)dan

Zp:2 0
o K™(do; ah) 9(dh) ddh:

Appendix C: Conversion to Analytic Roughness

Our slope distribution can be converted to anisotropic Beck-
mann or anisotropic GGX [Heil4] parameters straightfor-
wardly. Both the Beckmann and GGX disributions depend
on a scale matrix

ag
ra xay

raxay |,
aj

C 2015 The Author(s)

We show next how to extract parameters> 0, ay > 0,
andr 2 ( 1;1). Note that for isotropic PDFs, the extraction
process may be simpli ed since we haag= ay andr = 0.

Beckmann The Beckmann microfacet slope PDF is
Ps(h;S) = jQ%exp Ats h -
p S
We retrieve the parameters of the scale matrix by com-

puting 2nd order moments like in LEAN/LEADR map-
ping [DHI 13]

A

2a2= %2 P(h)dh
P

2a2= yaP(h)dh
v

Zaxay= % P(h) dh:
R
Note that ifP = Pg, then our conversion is exact.
GGX The GGX microfacet slope PDF is
Fov b Fle 1f
Px(h;§ = p— 1+h'S “h
p IS
Note that the 2nd order moments diverge with GGX. We pro-

pose an alternative estimation to retrieve the parameters of
the scale matrix

ax=  j%jP(h)dh
i

ay= ZRZJth P(h) dh

% ¥

%+ %
¥h
v

ay by
axb?+ b2’

Note that ifP = Py, then our conversion is exact.

P(h) dh

bl =
R2
z

[ P(h) dh
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ABC [LKYU12] SGD [BSH12] Reference Ours: Tabulated Ours: GGX Ours: Beckmann

Figure 6: Side-by-side tting comparisons of a few isotropic materials from the MERL database [MPBMO03].

Reference Ours: Tabulated Reference Ours: Tabulated

fabric134

fabric106

Figure 7: Side-by-side tting comparisons of a few anisotropic materials from the UTIA database [FV14].
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