An unstructured finite volume numerical scheme for extended Boussinesq-type equations for irregular wave propagation

Abstract : The interplay between low and high frequency waves is groundwork for the near-shore hydrodynamics for which Boussinesq-type (BT) equations are widely applied dur- ing the past few decades to model the waves’s propagation and transformations. In this work, the TUCWave code is vali- dated with respect to the propagation, transformation, breaking and run-up of irregular waves. The main aim is to investigate the ability of the model and the breaking wave parametriza- tions used in the code to reproduce the nonlinear properties of the waves in the surf zone. The TUCWave code numer- ically solves the 2D BT equations of Nwogu (1993) on un- structured meshes, using a novel high-order well-balanced fi- nite volume (FV) numerical scheme following the median dual vertex-centered approach. The BT equations are recast in the form of a system of conservation laws and the conservative FV scheme developed is of the Godunov-type. The approxi- mate Riemann solver of Roe for the advective fluxes is utilized along with a well-balanced topography source term upwinding and accurate numerical treatment of moving wet/dry fronts. The dispersion terms are discretized using a consistent, to the FV framework, discretization and the friction stresses are also included. High-order spatial accuracy is achieved through a MUSCL-type reconstruction technique and temporal through a strong stability preserving Runge-Kutta time stepping. Wave breaking mechanism have also been developed and incorpo- rated into the model. TUCWave code is applied to bench- mark test cases and real case scenarios where the shoaling and breaking of irregular waves is investigated.
Type de document :
Communication dans un congrès
The Ninth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory, Apr 2015, Athenes, GA, United States
Liste complète des métadonnées

https://hal.inria.fr/hal-01168949
Contributeur : Kazolea Maria <>
Soumis le : vendredi 26 juin 2015 - 17:17:04
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21

Identifiants

  • HAL Id : hal-01168949, version 1

Collections

Citation

Maria Kazolea, Argiris I. Delis. An unstructured finite volume numerical scheme for extended Boussinesq-type equations for irregular wave propagation. The Ninth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory, Apr 2015, Athenes, GA, United States. 〈hal-01168949〉

Partager

Métriques

Consultations de la notice

134