Memetic Semantic Genetic Programming

Robyn Ffrancon 1 Marc Schoenauer 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Semantic Backpropagation (SB) was introduced in GP so as to take into account the semantics of a GP tree at all intermediate states of the program execution, i.e., at each node of the tree. The idea is to compute the optimal " should-be " values each subtree should return, whilst assuming that the rest of the tree is unchanged, so as to minimize the fitness of the tree. To this end, the Random Desired Output (RDO) mutation operator, proposed in [17], uses SB in choosing, from a given library, a tree whose semantics are preferred to the semantics of a randomly selected subtree from the parent tree. Pushing this idea one step further, this paper introduces the Local Tree Improvement (LTI) operator, which selects from the parent tree the overall best subtree for applying RDO, using a small randomly drawn static library. Used within a simple Iterated Local Search framework, LTI can find the exact solution of many popular Boolean benchmarks in reasonable time whilst keeping solution trees small, thus paving the road for truly memetic GP algorithms.
Type de document :
Communication dans un congrès
A.I. Esparcia and S. Silva. Genetic and Evolutionary Computation COnference (GECCO 2015), Jul 2015, Madrid, Spain. ACM, pp.1023-1030, 2015
Liste complète des métadonnées

https://hal.inria.fr/hal-01169074
Contributeur : Robyn Ffrancon <>
Soumis le : samedi 27 juin 2015 - 01:09:48
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : mardi 25 avril 2017 - 19:05:56

Fichiers

newGECCO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01169074, version 1

Citation

Robyn Ffrancon, Marc Schoenauer. Memetic Semantic Genetic Programming. A.I. Esparcia and S. Silva. Genetic and Evolutionary Computation COnference (GECCO 2015), Jul 2015, Madrid, Spain. ACM, pp.1023-1030, 2015. 〈hal-01169074〉

Partager

Métriques

Consultations de la notice

438

Téléchargements de fichiers

670