
HAL Id: hal-01169491
https://hal.inria.fr/hal-01169491v4

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular C
Jens Gustedt

To cite this version:

Jens Gustedt. Modular C. [Research Report] RR-8751, INRIA. 2015. �hal-01169491v4�

https://hal.inria.fr/hal-01169491v4
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

51
--

FR
+E

N
G

RESEARCH
REPORT
N° 8751
June 2015

Project-Team Camus

Modular C
Jens Gustedt

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Modular C

Jens Gustedt

Project-Team Camus

Research Report n° 8751 — version 4 — initial version June 2015 —
revised version June 2018 — 48 pages

Abstract: We propose an extension to the C standard called Modular C. It consists in the
addition of a handful of directives and a naming scheme transforming traditional translation
units into modules. The change to the C language is minimal since we only add one feature,
composed identifiers, to the core language.
Our modules can import other modules as long as the import graph remains acyclic and a
module can refer to its own identifiers and those of the imported modules through freely
chosen abbreviations. Other than traditional C’s #include, our import directive ensures
complete encapsulation between modules.
The abbreviation scheme allows to seamlessly replace an imported module by another one
with equivalent interface. In addition to the export of symbols, we provide parameterized
code injection through the import of “snippets”. This implements a mechanism that allows
for code reuse, similar to X macros or templates.
Additional features of our proposal are a simple dynamic module initialization scheme, a
structured approach to the C library and a migration path for existing software projects.
The whole approach is validated by a formal description of a translation procedure from
Modular C to common C and a proof of the correctness of that procedure. Thereby we are
able to show that the class of stable programs can effectively be expressed in Modular C and
that the gain of modularity is not thwarted by a loss of expressiveness. Here stable programs
have a restriction on the C macro facilities that can be used. Most importantly, they may not
use the ## operator or similar tricks to create new identifiers, and they have to be careful
when using the same identifier for a macro and a function.
Our approach is implemented and used successfully and efficiently in several projects.
Interfaces can easily be provided both ways, to interface existing projects for Modular C or
to interface Modular C libraries with other programming languages

Key-words: C, modularity, encapsulation

C modulaire
Résumé : Nous proposons une extension au langage de programmation C, nommé
C modulaire. Elle consiste en ajoutant une poignée de directives et d’un schéma
de nommage à transformer des unités de traduction traditionnelles en module. La
modification au language-même est minimale, car nous y ajoutons une seul nouvelle
caractéristique, les identifiants composés. Nos modules peuvent importer autre mod-
ules tant que la relation d’import reste acyclique et un module peut référer à ses
propres identifiants et ceux des modules importés à l’aide d’abréviations librement
choisis. Autre que l’include traditionel, notre directive d’import assure l’encapsulation
complète entre modules. Le schema d’abréviation permet de facilement remplacer
un module importé par un autre qui réalise le même interface. En plus à l’export
de symboles nous fournissons l’injection de code paramétrer par l’importation de
snippets. Ceci implante un mécanisme de réutilisation de code, similaire au X-macro
ou template. Des outils supplémentaires que propose notre approche sont un schéma
d’initialisation, un approche structuré à la bibliothèque standard de C et un chemin
de migration pour des projets de logiciel existants.

Mots-clés : C, modularité, encapsulation

4 Jens Gustedt

1 Introduction

Since decades, C is one of most widely used programming languages, see [2], and is
used successfully for large software projects that are ubiquitous in modern computing
devices of all scales. For many programmers, software projects and commercial
enterprises C has advantages (relative simplicity, faithfulness to modern architectures,
backward and forward compatibility) that largely outweigh its shortcomings.
Among these shortcomings, is a lack of some closely related features: encapsulation,

reusability and composability. Most importantly, C misses to encapsulate different
translation units (TU) properly: all symbols that are part of the interface of a software
unit such as functions are shared between all TU that are linked together into an
executable.
The common practice to cope with that difficulty is the introduction of naming con-

ventions. Usually software units (referred as modules in the following) are attributed a
name prefix that is used for all data types and functions that constitute the application
programming interface (API). Often such naming conventions (and more generally
coding styles) are perceived as a burden. They require a lot of self-discipline and
experience, and C is missing features that would support or ease their application.
A lot of examples for “encapsulation by convention” are already present in the C

standard itself. To apprehend the difficulty let us try to make a complete list of the
conventions that the C standard enforces in view of the encapsulation of its own
library.
It reserves the prefixes str, mem and wcs (for string and byte functions), mtx_,

cnd_, tss_ and thrd_ (for the thread interfaces), is and to (for character classification
and conversion), E (for error codes), FE_ (for the floating point environment), PRI
and SCN (for IO formats), LC_ (for locales), atomic_ and memory_ (for atomic types
and functions), TIME_ (for time zones), SIG (for signals). In addition it also reserves
prefix-suffix combinations [u]int.*_t (for integer types) and [U]INT_.*{MAX|MIN|C} (for
integer macros), and the long list of names of C standard functions (for use as external
symbols).
We propose a new tool, Modular C, that generalizes this approach by systematically

adding name prefixes to the symbols that are exported by a translation unit. A number
of simple rules and compiler directives are provided to facilitate the usage of this
modular naming structure and helps to assemble software projects seamlessly and
efficiently.

Overview
This paper is organized as follows. In the continuation of this introduction we will
attempt to make our point about the shortcomings that we try to tackle, namely lack
of encapsulation, reusability and composability. Then we will argue why C needs a
specific approach to overcome these deficiencies and summarize our contributions.
Section 2 will then introduce our main concept, a modestly improved naming scheme
for identifiers that are exported by a module. Import of features from other modules,
Section 3, is then organized simpler and stricter than in common C. As a result, the
modular organization of projects is simplified and consistent module initialization can

Inria

Modular C 5

be guaranteed. Reuse of small software components (“snippets”) is then introduced in
Section 4. All this leads to a formal description of a translation procedure fromModular
C to common C, that can be proven to be correct, Section 5. The presentation of our
new approach is completed by providing a structured view of the C library, Section 6,
and by discussing the transition to Modular C in terms of a reference implementation
and migration paths for existing projects, Section 7.

Note: An online reference manual can be found here: http://cmod.gforge.inria.fr/
doxygen/index.html. The terminology used in this paper is based on the ISO C stan-
dard [8]. In particular, we refer to the concept of a conforming program as it is defined
there.

1.1 Lack of encapsulation

The example of C’s handling of its own library API already shows all weaknesses of
the current approach:
It is intrusive: Other software projects that include C library headers just have to cope

with the naming choices that have been made. If my module declares functions top
or strip it might be in conflict with functions in ctype.h or string.h. Such problem
might only become visible much later when the C standard evolves, or when my
program is linked against a new implementation of the C library.

It is inconsistent: Reserved names may include underscores or not. They may only be
reserved if their prefix is followed by uppercase, or if followed by a suffix such as _t
... Some of the reserved names are struct, union or enum tags, some are just plain
identifiers.

It is illegible: The rules are difficult to apprehend and to memorize. They form an
superfluous hurdle for beginners and occasional programmers with the C program-
ming language.

It is ever growing: The C standard evolves from version to version (as most software
interfaces) and adds constraints to the above list.

It is incomplete: The C standard headers define naming components, namely struct
fields, that are not protected by the above rules. User provided macros can thereby
interact badly with the internals of the struct of an included header. E.g the identifier
tv_sec could be used as a macro, although the time.h header uses it as a struct field.

For the latter, no “official” rule forbids an application module to define a macro tv_sec
which could badly interact with struct timespec from time.h. A conflict here may only
appear when a third party project attempts to combine that module with some timing
code. Other potential conflicts concern identifiers that are used as parameter names for
function prototypes or for inline functions. A parameter named string could interact
with another macro definition. Such a definition could come from another completely
independent module or from a future version and implementation of the C standard
library that introduces it in strings.h.
Other commonly used interfaces such as the POSIX operating system API add to

that Babylonian disorder by reserving other prefixes (such as pthread_ for threads)

RR n° 8751

http://cmod.gforge.inria.fr/doxygen/index.html
http://cmod.gforge.inria.fr/doxygen/index.html

6 Jens Gustedt

or suffixes (_t for typedef) or by using the same name as a struct tag and a function
(stat). All of this makes the usage of the C library quite tedious, but occasionally is
also at the origin of errors in implementations of the C library itself: avoiding the
pollution of the application name space requires a continuous struggle with feature
macros and include guards.
Besides these problems of name space pollution for shared identifiers, C offers some

tools for encapsulation on which we will build for our approach. First, a whole set
of features (types, macros, named constants) are per default not visible outside a
given TU: they have what the C standard coins no “linkage”, see below. A second
mechanism to hide global data and function objects from other TU is to declare them
with “internal linkage” by using the static storage class.

1.2 Lack of reusability

In addition to these issues about mutual identifier space pollution, C fails to provide
the necessary infrastructure for painless code reuse. Common strategies to ensure
reusability are:
Type-agnostic functions: The C standard itself defines generic interfaces for searching

and sorting (bsearch and qsort) that take data as pointers to void and comparison
functions as int (*)(void const*, void const*). This does not lead to real source code
sharing but basically only switches off the type system to apply the same type
agnostic binary to different application types.

Macros: Complicated software systems such as the Linux kernel1 or the Boost prepro-
cessor library2 define parameterized data structures such as lists through a set of
macros. The major drawback of this approach is that it quickly leads to code that is
difficult to read, to apprehend, to maintain and to interface, and that may lead to
replication of side effects.

X macros: This consists of writing small parameterized code snippets in .c files. These
provide e.g. function definitions that can be repetitively included into other source.
Parameterization of such code is effected by defining some specific macros before
the include and undefining them right after, see [12]. Boost3 partly exploits that
technique. This approach is probably the most readable of the three (the file contains
normal C code) and also is the safest of the three techniques listed here. Nevertheless
it has not found much use in the field. It is syntactical odd and disruptive on the user
side. Preprocessor #de�ne, #include and #undef are leaked in the implementation
part of the user code. The need to provide separate declarations and definitions
doubles the maintenance overhead.

1 http://kernelnewbies.org/FAQ/LinkedLists
2 http://www.boost.org/doc/libs/1_57_0/libs/preprocessor/doc/index.html
3 http://www.boost.org/doc/ ... /topics/file_iteration.html

Inria

http://kernelnewbies.org/FAQ/LinkedLists
http://www.boost.org/doc/libs/1_57_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/libs/1_57_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/ ... /topics/file_iteration.html

Modular C 7

1.3 Limited composability

C’s strategy to compose different TU into functional programs is twofold. First, linkage
ensures that several compiled object files can be stitched together along commonly
known features, so-called external symbols. These are data or function objects that
are provided by exactly one TU and that can be used by all others. They are only
identified by their name, no other property such as type or size is in general enforced.
A second level then consists in the use of #include directives that ensure that necessary
definitions of types, macros and named constants are shared and that all the commonly
used symbols have the same interpretation throughout the different TU.
This mechanism has several weaknesses, in particular almost all consistency checks

are left to the user or to external tools. struct and union types and members, macros
and named constants have “no linkage”. The equivalence between a description of
a feature in a header file and its instantiation is not guaranteed and is difficult to
enforce from within the language. Linking TU with contradicting specifications for the
same symbol result in “undefined behavior”, that is, there is no guarantee to obtain a
diagnostic or that the link fails, and bugged executable can be generated.

1.4 C needs a speci�c approach

In contrast to most other programming languages that are commonly in use, modern
C has the advantage of a rigid, static type system and an unambiguous declaration
syntax that, in principle, can still be parsed linearly in one pass. To our opinion, this
relative simplicity of the language should not be wasted by approaches that address
complex features of other languages, such as dynamic types, inheritance or implicit
typing. Therefore we try to stay as closely as possible to the existing lexical and
semantic properties of C.
Many approaches have been proposed over the years to improve the composability

of C projects, but seemingly few of them have resulted in tangible improvements for
programming in C on the language level. In particular, none of them seem to improve
modularity, that is to provide better encapsulation and reusability in addition to
composability. Starting with Unix’ make [5], many build systems, tools for component
composition (e.g. Knit [11]) or regrouping [1], header file generation [7], and package
management (e.g. dpgk [4]) have been proposed. Integrated development environ-
ments (e.g. eclipse [9]) and sophisticated editors (e.g. emacs [14]) help programmers
to reference declarations across several TU. Most of these tools need some additional
specification (makefiles, project specification, dependency or group description, linker
files, ...) to declare the connection between different TU. These usually have to be
provided in addition to the source code itself. Complementary to that, in the present
paper we try to develop a language feature that helps for the modularization of C
code. In fact many of the tools from the above categories can be used to implement
the system that we present, and not surprisingly our reference implementation uses
some of them.
Existing approaches that address modularity on the language level can be split

into two main categories. The first are rule sets that are provided by coding style and

RR n° 8751

8 Jens Gustedt

enforcement strategies. They are used to restrain possible use of language constructs
for information hiding, and thus to control the mutual impact that different modules
may have. Most prominent among the coding styles is probably the Linux coding style
[15]. Such coding rules then can be made sound and effectively enforceable as has
been shown by [13]: they provide a set of four rules and operational semantics for a
sufficiently large subset of C that allows them to check consistency and to identify
bugs in large C projects.
To our opinion these rule based approaches are only going half the way. They

don’t give the necessary tools for real encapsulation or code reuse and they leave the
burden of naming conventions to the programmer. Our own approach here extends
and improves such rule sets and should be compatible with most common practice.
It is in particular compatible with the rules of [13], so all proven properties of that
approach also apply to ours.
As another approach many new “C-like” compiled programming languages have

been defined over the years. Most prominent among these are certainly C++, Objective-
C and Java that in the advent of the concept of object oriented programming provided
better encapsulation and code reuse. Whereas these languages have found a large
distribution, they were only able to take a partial share in the software market. All
three have the disadvantage that they are much more complex than C. They add
multiple language constructs to a core that is similar to C, but provide no (or tedious)
migration paths for existing software, infrastructure or developers.
Recently there have been efforts to provide a common modular framework for all

three language siblings C, C++ and Objective-C, see [6]. Whereas that proposal
tackles and solves problems with the include hierarchy it seems to add an extra layer
of semantic complexity. Most importantly it does not address nor solve one of the
major problems that we have identified above: the lack of mutual encapsulation of TU
of any of the target languages.
Google’s Go (also sometimes referred as Golang) has gone a different path by

introducing a new programming language, see [10], that addresses most if not all of
the issues that we mention above. Here, we are particularly interested in its import
feature that has been one of the seeds of this work.
But unfortunately also, by design Go is a rupture. C on the other hand owes much

of its success to the fact that it cautiously watches to be backward and forward
compatible: standard conforming code that worked 10 or 20 years ago still works
today and will most likely still work as many years from now. For many, switching
to a new programming language is not an option and this proposal here is intended
to help to improve the C programming language with respect to the issues that we
raised. The strong emphasis on compatibility still has allowed C to evolve constantly.
As major new features C11 [8] integrated threads to the C library and atomics and
type generic functions to the core language. Our proposal inscribes itself in that steady
and constructive line of improvements that have been added to C.
The presented proposal for “Modular C” shares a lot of ideas with the onesmentioned

above, but is meant to be much simpler. It is designed to be compatible with C’s core
language and with the common coding practice in the C community. It only targets
that one language, C, and its support library, alone. The other two languages targeted

Inria

Modular C 9

by [6] have their own proper features and problems concerning modularization and a
mixed discussion easily misses language specific features and opportunities. On the
other hand, compared to the other two, C has a specific default, its lack of language
infrastructure for consistent code reuse that must be improved.

1.5 Our contributions

Modular C adds one main language feature (composed identifiers) and a handful of
directives that provide an extension of the C language with the following properties:
Encapsulation: We ensure encapsulation by introducing a unique composed module

name for each TU that is used to prefix identifiers for export. This creates unique
global identifiers that will never enter in conflict with any identifier of another
module, or with local identifiers of its own, such as function or macro parameters
or block scope variables. Thereby by default the import of a module will not pollute
the name space of the importer, nor interfere with parameter lists.

Declaration by de�nition: Generally, any identifier in a module will be defined (and
thereby declared) exactly once. No additional declarations in header files or forward
declarations for struct types are necessary.

Brevity: An abbreviation feature for module names systematically avoids the use of
long prefixed identifiers that are necessary for naming conventions.

Completeness: The naming scheme using composed identifiers applies to all file scope
identifiers, that are objects, functions, enumeration constants, types and macros.

Separation: Implementation and interface of a module are mostly specified through
standard language features. The separation between the two is oriented along the
C notion of external versus internal linkage. For an inline function, the module that
defines it also provides its “instantiation”. Type declarations and macro definitions
that are to be exported have to be placed in code sections that are identified with a
declaration directive.

Code Reuse: We export functionality to other modules in two different ways:
by interface definition and declaration as described above, similar to what is
usually provided through a C header file,
by sharing of code snippets, similar to X macros or C++’s templates.

The latter allows to create parameterized data structures or functions, easily.
Code repetition: The foreach and do directives allow simple code repetition at compile

time. This is e.g. useful to instantiate a number of functions for a list of values.
Acyclic dependency: Import of modules is is not from source but uses a compiled object

file. This enforces that the import relation between modules defines a directed
acyclic graph. It can be updated automatically by tools such as POSIX’ make and
we are able to provide infrastructure for orderly startup and shutdown of modules
according to the import dependency.

Interchangeability: The abbreviation feature allows easy interchange of software com-
ponents that fulfill the same interface contract.

RR n° 8751

10 Jens Gustedt

Optimization: Our approach allows for the full set of optimizations that the C compiler
provides. It eases the use of inline functions and can be made compatible with link
time optimization.

C library structure: We provide a more comprehensive and structured approach to the
C library.

Extendability: Our approach does not interfere with other extensions of C, such as
OpenMP or OpenCL.

Migration path: We propose a migration path for existing software to the module
model. Legacy interfaces through traditional header files can still be used for
external users of modules.

2 All is about naming

In its simplest form, our proposal just formalizes a common approach that is used
for C projects. It uses a name prefix (the module name) to specify the membership
to a module and to access other software components, see Listing 1 for an example.
A C module chooses itself a composed name, and may then be imported by other
modules through that name. This new import feature combines linking and #include
and therefore guarantees consistent use of all features according to their definition
throughout a whole software project.
The module name may be deduced implicitly from the source file name or, alter-

natively, it can also be specified explicitly in a module directive. Names of imported
modules may be deduced implicitly just by using their features, or, alternatively, they
can also be specified explicitly in an import directive. E.g we could add the following
to Listing 1 to make these names explicit:

#pragma CMOD separator ::
#pragma CMOD module proj::s t ruc t s :: l i s t
#pragma CMOD import . . ::element
#pragma CMOD import C::io

This sets the module prefix to be composed of three identifier elements, namely
proj, structs and list. Syntactically, the components of identifiers are separated by a
token, the separator, that may (with some restrictions) be chosen for each module.
Here the separator directive uses the Unicode character :: , but this could e.g. also
be C++’s traditional namespace separator :: or some other locale imposed character.
The significance of the composition of such module names will be explained later in
Section 3. For brevity we will omit all separator directives from other code samples.
The only additions of Modular C to the code are directives and composed identifiers,

no keywords or constructions are added to the core language itself. We have chosen
to use the prefix #pragma CMOD for lines that contain directives, but this choice by
itself is not essential for the feasibility of our approach.
In the above, all file scope identifiers of the module are visible to the outside

with the prefix. E.g., our module implements a function init that is externally visi-
ble as proj :: structs :: list :: init. If the imported module proj :: structs :: element in turn

Inria

Modular C 11

Listing 1 A module that exports two symbols and a type. The module name,
proj :: structs :: list say, is supposed to be deduced from the file name. A type
proj :: structs :: element is implicitly imported and the usage of it supposes that it
has a member var.

1 /* The fo l lowing declarat ions are exported */
2 #pragma CMOD declarat ion
3
4 /* Exports proj::s t ruc t s :: l i s t ::head */
5 s t ruc t head {
6 /* I m p l i c i t l y imports proj::s t ruc t s ::element . */
7 proj::s t ruc t s ::element * f i r s t ;
8 proj::s t ruc t s ::element * l a s t ;
9 } ;

10
11 /* From here only exported i f external l inkage . */
12 #pragma CMOD d e f i n i t i o n
13
14 void say_hel lo (void) {
15 C::io::puts (" Hello world ") ;
16 }
17 s t a t i c unsigned count ;
18 s t a t i c void say_goodbye (void) {
19 C::io::p r i n t f ("on e x i t we see %u" , count) ;
20 }
21 head* i n i t (head* h) {
22 i f (h) *h = (head) { 0 } ;
23 return h ;
24 }
25 /* Exports proj::s t ruc t s :: l i s t ::top , no c o n f l i c t with ctype . h */
26 double top (head* h) {
27 /* Expects proj::s t ruc t s ::element to have a member ` ` va l ' ' . */
28 return h�> f i r s t . va l ;
29 }

provides a symbol init, our module can access that one through the universal name
proj :: structs :: element :: init, and no naming conflict occurs between the two modules.
Similar to C++’s strategy, all composed identifiers are mangled during compilation

such that no naming conflict with other modules or standard headers can occur.
Such mangling needs the notion of reserved identifiers. These are identifiers that no
application code is allowed to use. For our purpose it is sufficient to target a particular
subset of C’s reserved identifiers:

Definition 2.1 An identifier that starts with an underscore and is followed either by a
second underscore or by a capital letter is strictly reserved.

RR n° 8751

12 Jens Gustedt

C reserves these for internal use of the compiler implementation and for future lan-
guage extensions, such as had been done by introducing_Bool in C99 and_Static_assert
in C11. Identifier starting with an underscore, followed either by a second underscore
or by a capital letter are strictly reserved.

Rule 2.2 A module may not define any strictly reserved identifier or use it as a component
of a composed name.

As stated above, the C library then reserves a lot more identifiers for features that
are interfaced via the different standard header files.

Definition 2.3 An identifier is reserved if it is strictly reserved, a keyword, or used to
name a feature of the C library.

Observe that we allow the use of “normal” identifiers that might also be used by the C
library. In fact, there are two reasons for that. First, we want to ensure that Modular
C modules may seamlessly compile with any future version of the C library. Then, we
want to be able to propose different versions of C library functions in modules with
equivalent interfaces, as e.g. a strict C library version of printf, C :: io :: printf, and an
augmented version POSIX :: io :: printf.

Rule 2.4 A module may freely use any identifier that is not strictly reserved as a compo-
nent of a composed name.

This rule also applies to keywords (with some caution) and library function names.
Also, the identifier main loses its special meaning when used in a module. Instead,
optionally one or several entry points are declared via directives:

#pragma CMOD entry un i t_ tes t

This declares a semantic similar to traditional main. In “backwards compatibility
mode” the identifier main is used as if such an entry directive for main would be
present. The function unit_test must have a prototype that is equivalent to one of the
following:

RT un i t_ tes t (void) ;
RT un i t_ tes t (i n t argc , char * argv [argc + 1]) ;
RT un i t_ tes t (i n t argc , char const * argv [argc + 1]) ;
RT un i t_ tes t (i n t (* argc) , char * (* argv) [argc + 1]) ;

and where RT is either int or void. Any valid identifier with a suitable prototype can be
chosen as entry point. This also includes the module-local identifier main, or function
names from other modules.

2.1 Exported features

A traditional C header file can provide access to a number of different features:
constants, types, macros, objects and functions. To simplify the life of the user of C
modules and to ease encapsulation we have the simple rule:

Inria

Modular C 13

Property 2.5 All the exported features of a module M correspond to a composed identifier
M :: L where L is not strictly reserved.

In particular this means that all types are named with composed identifiers and that
no exported feature uses a name that does not start with the module’s name.
In the following paragraph we go a bit into detail how Property 2.5 is assured. C

already has a convention that regulates the export of symbols, namely the linkage
of identifiers: only identifiers of functions and global variables have linkage. Other
identifiers, e.g. tags,⁴ typedef identifiers or macro names don’t interact with those
from other TU. Further, C distinguishes internal (declared with the keyword static)
and external linkage. If not specified otherwise, Modular C just follows and enforces
this concept.

Property 2.6 A module exports all its identifiers that have external linkage.

E.g., the module of Listing 1 exports proj :: structs :: list :: say_hello, but the identifiers
proj :: structs :: list :: say_goodbye and proj :: structs :: list :: count are not exported since
they are declared static. In addition it uses the imported identifiers C :: io :: puts and
C :: io :: printf from the module C :: io.
On the proper language level (after preprocessign) C has a rigid static type system:
identifiers can only be used after they have been declared, that is if sufficient type
information has been associated to an identifier to formalize if it is itself a typedef,
a tag, a named constant, a variable or a function. Within the same scope, this type
association may not be changed. Using an identifier not according to its definition is a
“constraint violation” and usually leads to an abortion of the compilation process.

For data objects, functions and tag types C also distinguishes declarations and
definitions. A declaration only provides information about an identifier such as type
and size, expected function arguments or the fact that a type with that tag exists.
A definition additionally “instantiates” a feature. For data it reserves storage of the
appropriate size, initializes it and identifies the object with its name. For a function it
implements the function and provides a symbol in the symbol table of the binary file.
For a tag type it fixes the kind (struct, union or enum) and the internal structure of
the type.
In traditional C, header files (.h) usually contain declarations, whereas TU (.c)

usually contain definitions.
C has a “one definition rule”, that stipulates that any data or function object and

any tag type must have exactly one definition. For Modular C we have an extension of
this rule:

Rule 2.7 The definition of an identifier also serves as its unique declaration.

The first advantage that we obtain from this is that we don’t have to separate a header
(".h" file) from the code of the translation unit.

4 For C, tagnames of struct, union and enum form their own “name space”. These constructs
are the only ones that result in a new type that is created. Other than the name suggest, a
typedef does not define a new type but only introduces an alias for an existing type.

RR n° 8751

14 Jens Gustedt

Property 2.8 Identifiers are imported with the type of their definition.

So far we can easily decide for global variables and functions if they are visible by
exporters or not. If they are declared static they are local to the module, otherwise
they are exported. Other identifiers (types, macros and named constants) are not
exported unless we say so, explicitly. By that we maintain the encapsulation that
C provides for these features. Nevertheless, we have to add a mechanism for those
features that are part of the module’s interface:

Rule 2.9 Identifiers without external linkage are exported iff they are in a declaration
section.

This can be done by placing a declaration directive in the source as shown. All code
after a such a directive, before the next de�nition directive, should only be declarations
or definitions similar to the ones found in a traditional header file. So typically, such
declaration sections only consist of type declarations (typedef, struct, union or enum)
and definitions of macros. Similar to C++, Modular C overcomes the distinction
between tag name space from an identifier name space.

Property 2.10 All struct, union or enum declarations give rise to typedef that are im-
plicitly inserted.

E.g., for Listing 1 we can assume that the struct declaration itself is preceded by

typedef s t ruc t head head ;

to declare the tag name and identifier at the same time. This means in particular, that
the identifier head cannot be reused in file-scope to refer to a different entity than
the struct head type.⁵

Definition 2.11 A typedef of an identifier ID is canonical if is of the form

typedef { s t ruc t | union |enum } ID ID ;

Property 2.12 All tagged struct, union or enum declarations are accompanied by an
appropriate canonical typedef.

2.2 Avoiding identi�er clashes

The function top that is defined at the end of Listing 1 shows another feature. If is only
visible as proj :: structs :: list :: top to the outside. So no naming conflict can occur with
C library header ctype.h which reserves the prefix to. Generally, this feature allows us
to reuse all reserved names of the C library, locally, and in general to decide freely on
names inside a project. They will never conflict with names of other projects, as long
as the chosen module names differ.

5 Duplicating a typedef is allowed in C since C11.

Inria

Modular C 15

This makes it easier to provide extensions to the C library, e.g., the POSIX standard
extends C by adding features to C library functions such as printf, much as it reads
in traditional C. Within Modular C any extension can do that freely, if it uses its
own module name space. Importers may use the two different versions of such
functions simultaneously as long as they use prefixed names, such as C :: io :: printf
and POSIX :: io :: printf.
For the C library itself, this approach is more flexible, too. Currently, the C library

already has several groups of functions that provide the same functionality for different
base types, such as the fabs/cabs or strlen/wcslen functions. In the case of fabs, there
are even two “functions” with the same name, one that is provided by math.h and the
other that is included by tgmath.h
With our approach, the C library can provide different modules to implement

interfaces to real and complex floating point functions. We introduce six modules
C :: real :: �oat, C :: real :: double, ..., C :: complex :: ldouble for the type specific functions
from math.h. Any of these modules has a function that locally is named abs and that
replaces fabsf, fabs, ... cabsl. The type generic function fabs from tgmath.h can be
superseded by an identifier abs in C :: math that interfaces all the above and analogous
functions for integer types with a type generic macro.

1 #pragma CMOD module C::math
2
3 #pragma CMOD declarat ion
4 /* Exports a type generic abs for
5 ar i thmet ic base types . */
6 #define abs (X) _Generic ((X) +0 , \
7 f l o a t : C::rea l:: f l o a t ::abs , \
8 double : C::rea l::double::abs , \
9 /* more cases */ \

10) (X)

To finish this part we summarize what it means for a type or an identifier to be
exported by a module.

Definition 2.13 A type definition or forward declaration is exported by a module M iff
it is found in a declaration section. If the type is a struct, enum or union type with tag
name X, it is exported with tag name M :: X.

Definition 2.14 A file scope identifier X is exported by a module M as composed identifier
M :: X iff one of the following conditions holds:

X is an object or function that is defined with external linkage. M :: X then refers to the
same object and has the same type as X.
X is declared or defined in a declaration section.
– X is an object or function that is defined with internal linkage. For each importing
module N, M :: X then refers to a specific object or function in N with internal linkage
and has the same type, storage class, definition and initialization (if any) as X.

– X is a typedef name. Then, M :: X is an alias to same type as X.

RR n° 8751

16 Jens Gustedt

– It is an enumeration constant. Then, M :: X is an enumeration constant of the same
value as X.

– X is a macro. Then, M :: X is a macro with an expansion identical to the one of X.
– X is the tag name of a struct, union or enum type. M :: X then is an alias to the
corresponding type with tag name M :: X.

Property 2.5 also ensures that imported macros, as they have composed names, do
not conflict with local identifiers:

Property 2.15 No imported macro will replace internal identifiers such as variable or
function names, tags, struct or union members, named constants or function parameters.

2.3 Abbreviations

So far the gain we have achieved with our approach is that we avoid code duplication
for identifiers with external linkage, reflected in Rule 2.7, and that we are better able
to encapsulate functions that represent similar features. Otherwise the grammatical
complexity of the code that this allows to write is similar to the traditional prefix
convention for C identifiers. Listing 2 introduces another functionality, abbreviations.
These identifiers (on the left side of the =, above) are local names that are only valid
inside the particular module. Here, they may replace the composed name on the right
side. By themselves, these abbreviations are not exported to other modules.
The name of every imported module and of the module itself can be abbreviated.

This feature is inspired by a similar feature of the Go programming language. With

#pragma CMOD import elem = . . ::element

we introduce a shortcut for refering to the identifiers of the imported module. The
symbol proj :: structs :: element :: init can now be referred as elem :: init.

Property 2.16 Features can be accessed with two component names as abbrev :: name
where abbrev is a short prefix that is chosen in a module or import directive and name
is the local name given by the module that defines the feature.

In the example above, the import directive

#pragma CMOD import p r i n t f = io::p r i n t f

allows to refer to the C library IO function as printf, without prefix. This gains modu-
larity. To partially or fully replace C’s IO module by POSIX’, we just have to replace
the corresponding import directives. For a partial replacement of printf we could use:

#pragma CMOD import p r i n t f = POSIX::io::p r i n t f

For a full replacement of the whole io module we could use:

#pragma CMOD import io = POSIX::io

Provided that the function prototypes are compatible, no other code change is neces-
sary.

Inria

Modular C 17

Listing 2 The module of Listing 1 with abbreviations.

1 #pragma CMOD module head = proj::s t ruc t s :: l i s t
2 #pragma CMOD import elem = . . ::element
3 #pragma CMOD import io = C::io
4 #pragma CMOD import p r i n t f = io::p r i n t f
5 #pragma CMOD import puts = io::puts
6
7 /* The fo l lowing declarat ions are exported */
8 #pragma CMOD declarat ion
9

10 /* Exports proj::s t ruc t s :: l i s t */
11 s t ruc t head {
12 elem* f i r s t ;
13 elem* l a s t ;
14 } ;
15
16 /* From here on , only exported i f
17 external l inkage . */
18 #pragma CMOD d e f i n i t i o n
19
20 void say_hel lo (void) {
21 puts (" Hello world ") ;
22 }
23 s t a t i c unsigned count ;
24 s t a t i c void say_goodbye (void) {
25 p r i n t f ("on e x i t we see %u" , count) ;
26 }
27 head* i n i t (head* h) {
28 i f (h) *h = (head) { 0 } ;
29 return h ;
30 }
31 /* Exports proj::s t ruc t s :: l i s t ::top ,
32 no c o n f l i c t with ctype . h */
33 double top (head* h) {
34 return h�> f i r s t . va l ;
35 }

Rule 2.17 An abbreviation must not conflict with other local identifiers.

In particular, no two import directives may use the same abbreviation.

2.4 The module name

Inside the module, all names exported by it are usually referenced through their
short name, e.g., init as we introduced it above. But the name proj :: structs :: list :: init

RR n° 8751

18 Jens Gustedt

could equally be used. There is one particular composed identifier of special interest,
the module name itself. This identifier, can freely be used to put emphasis on one
particular feature that is central for the module. For a first example, let us suppose
that our “element” module exports a struct type:

1 #pragma CMOD module proj::s t ruc t s ::element
2 #pragma CMOD declarat ion
3 /* Exports proj::s t ruc t s ::element */
4 s t ruc t proj::s t ruc t s ::element {
5 double data ;
6 proj::s t ruc t s ::element * next ;
7 } ;

With an abbreviation elem the code simplifies:

1 #pragma CMOD module elem= proj::s t ruc t s ::element
2 #pragma CMOD declarat ion
3 /* Exports proj::s t ruc t s ::element */
4 s t ruc t elem {
5 double data ;
6 elem* next ;
7 } ;

As Listing 2 has shown, using the module name for the struct declaration then eases
the use of that struct by the importer, here through the same abbreviation elem.

Property 2.18 The composite name of a module M can be referred to by the abbreviation
given by an import or module directive.

Similar holds for the name of the module in Listing 2 itself. The structure that had been
exported as proj :: structs :: list :: head in Listing 1 is now accessible as proj :: structs :: list,
thereby reflecting the idea that this is the main data type this module is about. All
users of the list module can easily use an “object centered” syntax to access the data
type and its functions:

1 #pragma CMOD module another_project::doit
2 #pragma CMOD import l i s t = proj::s t ruc t s :: l i s t
3
4 l i s t * pop_or_push (l i s t * l , double a) {
5 i f (l && l�>data == a) {
6 l = l i s t ::pop (l) ;
7 } else {
8 l = l i s t :: i nser t (l , a) ;
9 }

10 return l ;
11 }

In the example above the module name proj :: structs :: list is now abbreviated
as head. Thus the definition that is internally visible as struct head is exported as

Inria

Modular C 19

struct proj :: structs :: list. Our module can export identifiers in an “object oriented”
scheme: it exports proj :: structs :: list for the type name and proj :: structs :: list :: init
and proj :: structs :: list :: top as functions that act on this type.
This use of the module name is not limited to types. E.g., a function can be in the

center of interest of a module: a module C :: lib :: rand that interfaces the C library
function rand as C :: lib :: rand may export the function srand as C :: lib :: rand :: set and
the macro RAND_MAX as C :: lib :: rand :: MAX.

1 #pragma CMOD module rand = C:: l i b ::rand
2 #pragma CMOD declarat ion
3 i n t rand (void) ;
4 i n t set (unsigned i n t seed) ;
5 #define MAX C:: l i b ::RAND_MAX

Another example could be to add integral and derivatives to a numerical function:

1 #pragma CMOD module func = proj::func
2 double func (double x) { . . . }
3 double func::der iv (double x) { . . . }
4 double func:: integ (double low , double high) { }

2.5 Composing names on a �ner granularity

Modular C uses a second character that separates identifier components.

1 #pragma CMOD composer �
2 #define macro�0() macro�1 ("empty")
3 #define macro�1 (S) macro�2 (5 , S)
4 #define macro�2 (N , S) /* do something with N and S */

This provides a simple tool to parameterize local names that share some properties.
This avoids to force a particular choice of naming convention to the importer. If an
importer chooses e.g. a “long dash” – as composer, the above can be accessed as
macro–0, macro–1 and macro–2.
More importantly, this scheme will also be used to compose certain identifiers when

they are imported from so-called “snippets”, see below.

2.6 Mangling

To be able to set up some formal proofs for the validity of our approach, see Section 5,
we have to specify how we will ensure that all file scope identifiers are encapsulated.

Definition 2.19 Let S the source character set of a C platform, :: =2 S, and bS = S [f :: g.
1. An identifier N 2 S� is valid for a platform if it complies to a length restriction that

the platform may impose.

RR n° 8751

20 Jens Gustedt

2. A string ÒN = N0 :: N2 � � � :: Nn�1 2 bS� is a valid composed identifier if N0, . . . , Nn�1 2
S� are valid identifiers. Such a valid composed identifier is reserved if either n = 1
and N0 is reserved or if n > 1 and any of the N0, . . . , Nn�1 is strictly reserved.

3. A function f : (S [f :: g)� 7! S� is a valid mangling if it is injective and if the image
under f of any non-reserved valid composed identifier is not a reserved identifier.

Observe that this definition allows that composed names with two or more parts may
contain identifiers such as int, printf etc. that would otherwise be reserved by the
core language or the library. It also disallows that a mangling accidentally maps a
composed identifier to one that would be used by the C library.
For languages such as C++, many different functions have traditionally been

used for mangling. In contrast to the requirement in 3 they usually map to reserved
identifiers. This is because they have to ensure that non-reserved names that are
defined elsewhere with extern "C" binding cannot clash with mangled names.Modular
C implements complete encapsulation and has nomechanism to introduce “unmangled”
names, so we don’t need such a property, here.
On the other hand, we only require a mangling to map to non-reserved names

because it makes our proofs simpler. Even in our reference implementation we use
a derivation of such a function that is often used for C++ name mangling. It maps
the identifiers Ni as of the definition to a concatenation of strings Mi = ‘iNi where
‘i is the length of Ni, prefixed and postfixed by _ZN2_C and E, respectively. E.g.
C :: real :: double :: minv is mapped to _ZN2_C1C4real6double4minvE. By construction
this function is injective. The prefix _ZN ensures it can effectively identified by the
tools of our platform as a composed identifier. Identifiers with such a prefix are in
fact strictly reserved and could theoretically clash with other internal identifiers of
the platform. Any implementation of Modular C that uses reserved identifiers for
mangling should ensure that this is not the case, and in particular that the mangling
does not produce identifiers that are used by its C library. Equally, any mangling
should ensure that none of the identifier patters that are listed in Section 7.31 of the
C standard, “Future library directions”, are in the image of f .

Definition 2.20 For a conforming C source P and a mangling f , the mangled source
f (P) is the source file that results from a replacement of all non-reserved identifiers N in
file scope that are not keywords by f (N).

Definition 2.21 For a conforming module M and a mangling f , the mangled module
f (M) is the C source file that results form the application of the following:
1. remove the snippet, if any,
2. replace all abbreviations by the corresponding composed identifiers,
3. prefix all non-composed file scope identifiers by the module name,
4. replace all non-reserved composed identifiers N that are not keywords by f (N).

Inria

Modular C 21

3 The import graph

The composed name of a module also determines some of the other modules that it
imports, its parent modules.

Property 3.1 A module implicitly imports all modules that have a name that is a prefix
of its name.

E.g., implicitly by its naming, module proj :: structs :: list imports proj and proj :: structs.
Then, with the import directive it explicitly imports proj :: structs :: element.
Consider another_project :: doit from above as an example. It gives rise to the di-

rected import graph that is depicted in Figure 1. Explicit or implicit imports define a

myproject

Figure 1 The import dependency graph of the example module

directed import relationship between the modules of a given project, its import graph.
The import graph of a specific module A is the subgraph of the import graph of the
project that contains all modules that A imports.

Property 3.2 The import graph is transitive, that is if module A imports B it imports
also all modules that B imports.

Claiming full transitivity of imports differs from Go’s strategy. There, an import of
a module B only provides the necessary information to use all interfaces of B and not
more. This would be a possibility for C, too, that information could be directly stored
in the compiled object of B, much similar as Go does this.
We have not adopted such a restricted approach for several reasons. First, it is

difficult to implement. It would necessitate to write or integrate a full parser for the
language into our front end, whereas the approach presented here is mostly text
replacement of composed identifiers. Modular C can mostly be implemented with
scripting as provided by the POSIX utility sed, see Section 7.1, below. Keeping track of
the contents of the import graph would add a lot of complexity to the implementation
of Modular C and probably worsen compile times substantially.

RR n° 8751

22 Jens Gustedt

Second, forcing transitivity ensures that our approach is consistent with the rules
of [13] for modularity and information hiding: their “Rule 3” that forbids “vertical
dependency” for imported features is equivalent to claim that no module can be
imported before any of its dependencies.
Then, Go’s main motivation for its restrictive strategy comes from observing the large

compile time overhead that C++ include hierarchies impose on software projects:
there, include files tend to be monolithic, they include a large number of other
files themselves, and the language is difficult to parse. In particular, declarations of
recursive templates can incur an exponential computational overhead at compile time,
and this overhead occurs for every TU in a project uses such a type.
This situation is not at all comparable for C because C has no syntax constructs for

recursive declarations. C compilers nowadays are able to parse C headers extremely
fast. Their bottleneck usually is code generation and optimization, and so the problem
that has been observed for C++ does not apply to C.
We will see below, how our snippet feature that provides functionalities that are

similar to C++ template can avoid the pitfall of exponential expansion for every TU.

3.1 Import is binary

As already mentioned, the import feature is not expected to work source to source.

Property 3.3 The import of a module uses a compiled object.

For our reference implementation we chose the POSIX archive file format to store
some textual information along with the object file.
With that property a software project only has to provide the compiled objects of its

modules to its clients. This then enables them to link and execute executables that use
that module. But since all interface information is present in the compiled object, they
also may compile their own code that would use such a module. In that sense, any
binary distribution of modules is, with our model, also a development distribution.
As a direct consequence we have the following rule:

Rule 3.4 The import graph for any module must be acyclic.

This property is easily checked by build tools such as POSIX’ make. It also has
the advantage that on a source level we have no need for include guards or similar
mechanism that deal with cyclic dependencies.

Lemma 3.5 There is a topological sort of the import graph.

Later, in several places we will assume that one such topological sort among all the
possible ones is given and fixed.

Lemma 3.6 All exported symbols of all modules of the import graph are accessible.

The reason behind this rule is simple: a module a :: b :: c that appends a new naming
component c to an existing module a :: b is supposed to extend that module. To extend
it,

Inria

Modular C 23

Listing 3 A module with an initialization function.

1 #pragma CMOD module proj::something
2 #pragma CMOD import thrd = C::thrd ;
3 #pragma CMOD import mtx = thrd::mtx ;
4
5 #pragma CMOD startup s t a r t
6
7 # i fndef thrd::NO_THREADS
8 mtx bkl ;
9 void s t a r t (void) {

10 mtx:: i n i t (&bkl , mtx::recurs ive) ;
11 }
12 #else
13 void s t a r t (void) {
14 // empty
15 }
16 #endif

it potentially needs all identifiers that are exported by a :: b, and
it must not provide conflicting definitions for objects that are already defined there.

In particular the identifier a :: b :: c could already have a definition or declaration in
the parent module a :: b.
The syntax for importing other modules makes no reference to a source file name

for a module, in particular it is not fixed what the separator character for the external
file name representation would be. Such a detail is left to the implementation. Our
reference implementation separates file name components with a hyphen, e.g. the
source file name for the C :: io module is C-io.X.

3.2 Module initialization and cleanup

The strict dependency relation between modules given by the import graph also lets
us provide secondary features, module initialization and cleanup. Such features may
be helpful for file scope objects that need to be initialized dynamically; C does not
allow to call functions to initialize statically allocated objects. This feature is achieved
by a startup directive:

#pragma CMOD startup s t a r t
void s t a r t (void) { . . . }

If such a directive is given, the function is guaranteed to be executed before accessing
any symbol (variable or function) of the module, and after all such startup functions
are executed for all imported modules. Such a function must have a prototype as
indicated in the example.

RR n° 8751

24 Jens Gustedt

Property 3.7 The functions listed in startup directives of all modules of a program are
executed before the entry function, and this in an order that is consistent with the import
graph.

Consider Listing 3 as an example. Here a module that needs a global mutex variable
bkl to regulate access to some of its functions initializes that mutex with a non-default
property mtx :: recursive. If e.g., the module C :: thrd :: mtx would need by itself a similar
form of initialization, such an initialization is done before. By that the call to mtx :: init
is always guaranteed to operate in a well defined context.⁶
Our approach has two main advantages over the techniques that are currently

available for C or C++. The C standard already offers the type once_�ag that can be
used to launch a function dynamically, when the first use of an object occurs. That
dynamic check is repeated at each execution of that same code. The presence of a
conditional function call can inhibit some optimization opportunities.
Our approach has only an overhead at startup of the application, where all the

startup functions are called once and for all. Thereafter, during the execution of the
program itself there is no overhead at all and an application has the guaranty to start
all its operations in a well defined state.⁷
Our approach is also different from the approach in C++. There, statically allocated

objects can be initialized dynamically with a function, but the execution order of these
initializations is not prescribed by the standard. Thus C++ makes it quite difficult to
provide a consistent initialization of static objects, as soon as there are dependencies
between them.
To complement this approach for initialization we also propose two other interfaces,

named after the C library functions atexit and at_quick_exit that they use under the
hood.

#pragma CMOD atex i t module_atexit
#pragma CMOD at_quick_exi t module_at_quick_exit
void module_atexit (void) ;
void module_at_quick_exit (void) ;

These are executed when the program terminates.

Property 3.8 The functions named in atexit and at_quick_exit directives of all modules
of a program are are inserted as exit and quick_exit handlers before the entry function (as
if inserted with the atexit and at_quick_exit standard library functions). The insertion
is such, that the functions are executed in inverse order of the corresponding startup
functions.

6 All of this is only done conditionally, C :: thrd :: NO_THREADS will be explained in Section 6.3.
7 If an application has to perform an expensive initialization that would be too costly to
impose to all its users, it may still use the once_�ag mechanism, instead.

Inria

Modular C 25

4 Code sharing

C’s #include directive is not only a tool to share interfaces between TU, but can also
be used to share almost any form of C code. To provide the same expressiveness in
Modular C we have to provide mechanisms for that, too.
A first mechanism that C natively supports are inline functions, that is functions

for which the function body is made visible to any importer. The next section briefly
describes how Modular C uses and facilitates this feature. Then we introduce and
develop a feature coined code snippets that is meant to replace inclusion of arbitrary
C code.

4.1 Inline functions

In traditional C, classifying a function with inline ensures that it can be placed in a
header file without creating symbol definition conflicts between different TU. This
feature is intended to ease optimization, because the code of such a function can
then be integrated in place (inlined) by its users. Thus optimization techniques such
as special case analysis and constant propagation can be applied to the body of the
inlined function.
The engineering of inline functions is a bit tedious in traditional C. They have to be

moved to a header file (to be visible by others) and a special “instantiation” has to
be provided in one TU (to emit the external symbol). Modular C avoids such code
movements and additions:

Property 4.1 A function definition with inline specifier is made visible to all importers.

4.2 Snippets

We propose an additional formalism to share code that will give rise to different
functions (macros, types, constants ...) in the context of the importer. The main
property of a snippet directive is that the code that follows after it is not compiled
within the containing module but it is only injected into a module that imports it
explicitly, much as the traditional X macro strategy would do.

Property 4.2 Other than for the replacement of some identifiers specified below, all code
that follows a snippet directive is injected as is at the point of an explicit import directive.

Compared to C++ templates, the replaced identifiers play the role of template
parameters. But in contrast to that, a snippet only provides a textual injection of code
into the importer where the identifiers in question are textually rewritten as specified.
Let us start with a simple module C :: snippet :: init whose only purpose is to share

code for a uniform init function with the importer.

1 #pragma CMOD module i n i t = C::snippet:: i n i t
2
3 /* A l l code hereafter i s integrated by the importer . */
4 #pragma CMOD snippet T = complete

RR n° 8751

26 Jens Gustedt

5 T* i n i t (T* x) {
6 i f (x) *x = (T) { 0 } ;
7 return x ;
8 }

The snippet directive introduces a local name, here T, that stands for the name of
the importing module. It is the first case of an identifier inside the snippet that is
rewritten before the snippet code is injected into its target.
As we have seen in Section 2.4 above, such a module name may represent a type,

but may also represent a function, macro, etc or no particular feature at all. On the
right hand side of the = the coder of the snippet may specify what (and if) some
particular property is expected from the importing module.
In the example, T should clearly be a type. Here, the indication complete on the

right requests that this module name corresponds to a complete type.⁸ The function
that is defined tests if its argument x is a valid pointer and then initializes the object
with the zero-initialized compound literal.

Property 4.3 The identifier (if any) that is specified in the snippet directive is replaced
by the name of the importing module before insertion.

Since all the code after a snippet directive forms the snippet, there can only be one
such directive:

Rule 4.4 There may be at most one snippet directive in the source of a module.

Listing 4 shows an example for three different ways to import snippets. For the first,
module C :: snippet :: init is imported without an abbreviation. All the symbols from
the snippet are injected into the importer. Here, this is just one function, init. It is now
visible as a member of this module, namely as proj :: structs :: toto :: init. The identifier
T stands for the name of the importer and so the function has the prototype:

proj::s t ruc t s ::toto * proj::s t ruc t s ::toto:: i n i t (proj::s t ruc t s ::toto *) ;

The mechanism for the two other import directives that actually have abbreviations
are described below.

4.3 Con�icting names in snippets

Generally, importing snippets as described so far may lead to naming conflicts if
two different imported snippets use the same local identifier to name two different
features. This can be mitigated by using the abbreviation feature of Section 2.3.
Identifiers that originate from a named import receive that prefix as an additional
name component, separated by the composer. For the second import in Listing 4,
the module C :: snippet :: alloc has the abbreviation bare. All symbols that are injected
from the its snippet will be prefixed by that.

8 For C, a type is complete, if it permits to define a variable. Incomplete types are e.g. void,
arrays types without size of the form double[], or forward declared struct tags.

Inria

Modular C 27

Listing 4 A module that imports code snippets for two functions and a specialized type.

1 #pragma CMOD module toto = proj::s t ruc t s ::toto
2
3 #pragma CMOD declarat ion
4 s t ruc t toto {
5 C::s i ze counter ;
6 /* your f a v o r i t e data */
7 } ;
8 #define bare� i n i t i n i t
9

10 #pragma CMOD d e f i n i t i o n
11 /* Import three snippets . */
12 #pragma CMOD import C::snippet:: i n i t
13 /* A snippet imported with an abbrevation . */
14 #pragma CMOD import bare = C::snippet::a l loc
15 /* A snippet with 3 s lo t s that are f i l l e d . */
16 #pragma CMOD d e f i l l vec::s i ze = 23
17 #pragma CMOD f i l l vec::vType = vec23
18 #pragma CMOD f i l l vec::bType = toto
19 #pragma CMOD import vec = C::tmpl::vector
20
21 s t a t i c C::s i ze _Atomic running = 0;
22 toto * a l loc (void) {
23 toto * x = bare�a l loc () ;
24 i f (x) x!counter = running + + ;
25 return x ;
26 }
27 vec23 myState = { 4 7 1 1 , } ;

It is implemented in a similar way as C :: snippet :: init, see Listing 5, but provides
two snippet symbols init and alloc. The first is only declared, the second is also defined.
Note that the module C :: snippet :: alloc does not know much about the context in
which the snippet function alloc will be placed by the import mechanism. It formulates
an interface contract for init and enforces that the name of the importing module
must be a complete type and that it must implement a function init with the specified
prototype. Also note that this second part of the interface contract does not need
special syntax. A standard C declaration of a function prototype is sufficient for its
specification.
Because we have given an abbreviation when importing this module, the importer

changes the imported identifiers to bare�init and bare�alloc, respectively. If it weren’t
for the #de�ne, there would be four functions. But with the define, proj :: structs :: toto :: bare�init
is replaced by proj :: structs :: toto :: init and effectively the alloc snippet will use the
latter for its implementation of bare�alloc.

RR n° 8751

28 Jens Gustedt

Listing 5 A snippet module for a simple allocation function.

1 #pragma CMOD module a l loc = C::snippet::a l loc
2 #pragma CMOD import l i b = C:: l i b
3
4 /* In tegrate as�i s to the importer . */
5 #pragma CMOD snippet T = complete
6
7 #pragma CMOD declarat ion
8 extern T* i n i t (T *) ;
9

10 #pragma CMOD d e f i n i t i o n
11 T* a l loc (void) {
12 return i n i t (l i b ::malloc (s i zeof (T))) ;
13 }

Up to now the two imports that we discussed have had the effect of the following
four declarations.

#define proj::s t ruc t s ::toto::bare� i n i t proj::s t ruc t s ::toto:: i n i t
proj::s t ruc t s ::toto * proj::s t ruc t s ::toto::bare�a l loc (void) ;
proj::s t ruc t s ::toto * proj::s t ruc t s ::toto:: i n i t (proj::s t ruc t s ::toto *) ;
proj::s t ruc t s ::toto * proj::s t ruc t s ::toto::a l loc (void) ;

Observe that the function alloc that is defined by the module itself may even use
bare�alloc, internally. No naming conflict occurs.

Property 4.5 Snippets can be imported several times into the same module M if each
import uses a different abbreviation.

4.4 Slots

As we have seen in the last example, naming imports and redefining some prefixed
names can be used to parameterize snippets.⁹ By that snippets can even be imported
several times with different prefixes and different definitions for some of their identi-
fiers. But this mechanism is cumbersome, does not scale very well and lacks automatic
verification.
To ease the parameterization of snippets there is a third mechanism with slot, �ll

and de�ll directives, see Listing 6 for an example. Here, the snippet is parameterized
with three identifiers, its slots. A slot directive names a snippet-local identifier, that
will be replaced as specified when the snippet is inserted. E.g Listing 6 has slot bType.
On the importing side, Listing 4, this slot is filledwith the identifier toto. It is important
to note that this mechanism replaces one identifier (the slot) by another (the fill).

9Here it the function init served as a parameter to bare�alloc.

Inria

Modular C 29

Listing 6 The first lines of a module with a snippet with three slots.

1 #pragma CMOD module C::tmpl::vector
2
3 /* A defaul t value for the s i ze s lot , below . */
4 #define s i ze 1
5
6 /* No requirement concerning the importer . */
7 #pragma CMOD snippet none
8 /* Three s lo t s parameterize the code . */
9 #pragma CMOD s lot vType = complete

10 #pragma CMOD s lot bType = complete
11 #pragma CMOD s lot s i ze = i ce /* has defaul t */
12
13 #pragma CMOD declarat ion
14 typedef bType vType [s i ze] ;
15 . . .

Rule 4.6 A �ll directive replaces the slot with the identifier after the = sign.

A de�ll directive, “de�ne �ll”, is a specialized form of a fill. Instead of an identifier, its
right specifies a token sequence that serves as a macro replacement. E.g. the de�ll for
vec :: size from above is equivalent to

#define A_UNIQ_ID = 23
#pragma CMOD f i l l vec::s i ze = A_UNIQ_ID

We will not further go into details of this mechanism.
Much as for the snippet name, a fill identifier could be any identifier with a variety

of properties. As before, the coder of the snippet may request some specific properties.
Here, two of the slots are expected to be rewritten to types (complete) and the other
to an integer constant expression (ice). Listing 4 shows how the three slots in the
specification of C :: tmpl :: vector are filled:

C :: tmpl :: vector proj :: structs :: toto
vType vec23
bType toto
size value 23

or with their full external names

C :: tmpl :: vector proj :: structs :: toto
C :: tmpl :: vector :: vType proj :: structs :: toto :: vec23
C :: tmpl :: vector :: bType proj :: structs :: toto
C :: tmpl :: vector :: size value 23

Generally, all slots of all directly imported modules must be filled. If for example
bType would not be filled by an importer, a syntax error for the use of the identifier

RR n° 8751

30 Jens Gustedt

C :: tmpl :: vector :: bType would abort the compilation. But this mechanism can also
be used to provide a default value for a slot. The module C :: tmpl :: vector globally
defines the macro C :: tmpl :: vector :: size. If an importer omits the slot size, the value
1 from that global definition is used.
This approach with snippets has several advantages over the X macro technique:
The possibility of specifying certain requirements for the replacement.
No consistent header declarations have to be maintained.
There is no need to use conditional (#ifdef) compilation and #undef.
Slots can have default values.
A subsequent use of a snippet will not be polluted by symbols of a previous use.

Definition 4.7 A snippet is called a template if all the features that it specifies for the
importer are named through slot directives.

Or, stated otherwise, it is a template if it does not pollute the name space of the
importer.
Besides complete and ice, the declaration of a slot allows many other specifications,

for example global (may not be overwritten), intern (for a per-import unique identifier),
startup and atexit for startup and shutdown functions.

4.5 Reach of snippets

Even though we have transitivity of the import graph, name spaces of modules are
completely separated and don’t pollute each other. This property should be preserved
if we use snippets. Therefore we ensure that any name that is imported from a snippet
is indistinguishable from an identifier that was directly defined in the module itself.
The snippet is fully “absorbed” by the module that imports it:

Rule 4.8 Any identifier N in B whose definition originates from a snippet-import for A
in B is seen by any importer of B as if it were genuinely defined by B.

If we would integrate snippets by transitivity, coding with them would become
quite complicated. E.g. for Listing 4 this would have the consequence that a module
D that imports proj :: structs :: toto would also define its own functions init and alloc.
Consequently, the name spaces of D would be polluted with identifiers of which it has
no control. In fact, the name space of a module M that indirectly imports a snippet
from A should not be affected by any future changes of A, possibly without the author
of M even being aware of the import.

Rule 4.9 The snippet of a module A is only integrated by an explicit import of A.

By this, our strategy also avoids the overhead of repeated compilations of transitively
imported snippets, as they occur for C++’s template. As already mentioned above,
for C++ intermediate instantiations must be compiled for any TU that transitively
includes a recursive template. In contrast to that an instantiation of a Modular C
snippet must be explicit (by an explicit import) and is only compiled once for a whole
project.

Inria

Modular C 31

5 A formal description

One of the advantages of our approach is that much of it can be described by text
rewriting that allows for a formal proof of its validity.

5.1 Source reorganization and stability

As a first step we have to define the properties that we expect of a module:

Definition 5.1 For a module M the completed source M+ is M to which all imported
snippets are integrated in the order they appear in import directives.

Definition 5.2 A module M is valid iff all of the following hold:
1. M fills all slots of imported snippets.
2. M uses a set of mutually distinct valid identifiers for all abbreviations and slots.
3. Besides the fact of using composed identifiers, M+ is syntactically correct C code.
4. No declaration of an exported feature of M+ depends on a non-exported feature.
5. After preprocessing,¹⁰ the feature declarations of M+ are in dependency order.
6. Each identifier used by M+ is defined exactly once, either by M+ or by a module that

it imports.
7. M+ uses local and imported identifiers, including tag names, according to their

declaration.

WithModular C we want to reduce the need to explicitly specify header information
and to have such information extracted automatically by a tool. Such an extraction
would be very difficult, if we would allow arbitrary dependencies between macro defi-
nitions, type declarations and object declarations. Therefore we introduce a separation
of a source in three conceptually different parts, for macro definitions, declarations
(types, objects and functions) and definitions (objects and functions).

Definition 5.3 For a conforming C source P, P (P), the preprocessor extract, is the
collection of all logical lines of P that are prefixed with # and that are not #pragma or
#line directives.

In the two remaining extracts, inline functions are treated specially. The intent
of C’s inline feature is to make the definition of a function visible to all users of the
function. Therefore, all inline functions are placed in the declaration part and possible
additional declarations are removed.11

Definition 5.4 For a conforming C source P, D(P), the declaration extract, is obtained
from P by

preprocessing it,

10 C’s compilation phase 4, see [8].
11 In fact for those inline functions that have external linkage such an additional declaration

would force an instantiation of the corresponding linker symbol.

RR n° 8751

32 Jens Gustedt

adding canonical typedef for all tagged struct and union types to the beginning,
adding canonical typedef for all tagged enum types immediately after their definition,
replacing all data object definitions and all definitions of functions that are not inline
by declarations that use appropriate extern or static linkage specification,
removing all extern inline declarations that are not definitions.

The third part contains the “rest” of the code of a source P, that is mainly object and
function definitions. Observe that this definition only removes macro definitions, but
leaves conditional preprocessor directives (#if/#else) in place.

Definition 5.5 For a conforming C source P, I (P), the definition extract, is obtained
from P by

removing all logical lines that form #de�ne of #include directives,
removing all file scope typedef, struct, union or enum definitions,
removing all definitions of static inline functions,
replacing all remaining definitions of inline functions by appropriate extern inline
declarations that are not definitions.

Finally, we need to be able to tell, when two conforming C programs are equivalent.
Whereas this is a difficult problem in general, we can restrict ourselves to programs
where all features are defined by the same token sequence, but may perhaps appear in
a different order and may be complemented by declarations that are not definitions.

Definition 5.6 Two conforming C sources P and P 0 are token equivalent, if, after
preprocessing, for any definition A2 P there is A0 2 P 0 that is defined by the same token
sequence, and, vice versa, for any definition A0 2 P 0 there is A2 P that is defined by the
same token sequence.¹²

C’s syntax and semantic are quite restrictive:

Lemma 5.7 Two sources that are conforming and token equivalent are functionally
equivalent and give rise to the same set of external symbols.

This can be seen by using a feature dependency graph that links any global identifier
to the terms that it uses in its declaration. The fact that the two sources are conforming
and token equivalent implies that their feature dependency graphs are isomorphic: if
a declaration of an identifier A uses another identifier B, B’s declaration must precede
A’s in any conforming code.

Definition 5.8 A conforming C source P is called stable if all the following hold:
1. P and the concatenation P (P) � D(P) � I (P) are token equivalent.
2. It does not contain #include directives.
3. It does not contain explicit references to C library functions or objects.

12 This correspondence does not necessarily define a bijection between instances of definitions,
because typedef definitions may appear several times in a conforming C source.

Inria

Modular C 33

4. If defined, main has prototype int main(int argc, char*[argc+1]) and no execution can
reach the terminating } of the function body.

5. It does not use preprocessor operators # and ##.
6. It does not use the reserved identifiers __func__, __LINE__ or __FILE__.

Stability for a C source may look like a strong restriction, but it isn’t much in our view.
(2) and (3) stem from the fact that Modular C replaces #include directives by import.
To be comfortable with the concept, the reader may just assume for the following
discussion that all #include directives have already been applied to the code.
By the requirement in (1) and (2), all conditional compilation (with #if etc) only

depends on predefined constants and on macros that are defined in P itself. This
requirement imposes some discipline for the reuse of macros inside #if/#elif evaluation,
and interferes with cases were a macro name is also used for a function. In most cases
code with such macros can be sanitized. E.g. in the following, the declaration of the
function and the macro definition cannot be interchanged.

double fabs (double a) ;
#define fabs (X) \

_Generic ((X) , \
default : fabs , \
f l o a t : fabsf)

Thus this short code isn’t stable. But the code can easily be sanitized:

#define fabs (X) \
_Generic ((X) , \

default : fabs , \
f l o a t : fabsf)

double (fabs) (double a) ;

Placing the function name inside parenthesis for the declaration (and other places
where it shouldn’t expand) protects the identifier from macro expansion.

Another requirement in (1) that is perhaps not obvious, is that it forbids the definition
of struct, union and enum inside object or function declarations or in macro expansions.
Consider the following definition:

s t a t i c s t ruc t { unsigned a ; } x = { . a = 0 } ;

This would give rise to the following declaration in the declaration extract:

s t a t i c s t ruc t { unsigned a ; } x ;

Having two struct definitions in P (P) � D(P) � I (P) would be erroneous: if the struct
is without tag name (as in this example) the two types are considered different and
we have a redeclaration of x with a different type. If on the other hand we would add
a tag name, we would have two definitions for the same struct type.
Such situations can be avoided easily by having all type definitions separated:

typedef s t ruc t { unsigned a ; } type_of_x ;
s t a t i c type_of_x x = { . a = 0 } ;

Such code is then easily separated into declaration and definition extract.

RR n° 8751

34 Jens Gustedt

Restrictions (5) and (6) have to do deal with “identifier aware” programs that
would change their behavior if identifiers are mangled. Whereas the latter restriction
is mostly harmless, (5) may constrain the use of sophisticated macro packages. A
program that would want to use these features would have to adjust longer output
strings (for __func__ e.g.) and prove equivalence of token concatenation and similar
features with mangled identifiers.
Observe, that the use of canonical typedef in Definition 5.4 implies that a tag name

cannot be reused as another normal identifier, such as e.g.. POSIX does for struct stat
and function stat. We view the difference of tag names and identifiers as a historic
artifact, that has not much importance in modern code.
Also, remember that a conforming C source can be compiled into an object file, but

may perhaps not lead to a valid executable: the source may refer to external identifiers
that must be linked from other TU.

5.2 The replacement procedure

Figure 2 shows a formalized replacement procedure to compile a module into an
archive file. It involves replacements of abbreviations, cut and paste of text chunks
and name mangling. In addition to simple text replacement we need to generate the
import graph and a topological sort of it (3), some code generation for some stub
functions (9) and, most difficult, declaration extraction (7e).
The stub functions can be generated similar to Listing 7. By that each module exports

an initialization function with local name _ModuleInit and eventually another one that
contains a conventional main. The first calls all generated _ModuleInit functions for
all imported modules (in topological order), and then (if any of the three are defined)
inserts module_atexit and module_at_quick_exit in the appropriate queues and calls
the modules’s own module_startup function. Here, as an example, this uses the C
standard data type once_�ag to guarantee race freeness of the overall initialization.
Implementations that don’t provide the C11 threads interface would have to use a
mechanism that makes this at least asynchronous signal safe, e.g, by using a flag of
type sig_atomic_t.
In addition, if the module defines an entry function, EntryFunction, say, we create a

traditional main function as entry point to the program that just calls the module’s
_ModuleInit and then jumps to the modules EntryFunction.
In a first step, we have to show when mangling does not change the validity of a

given C source. For the C compilation itself, before linking to an object file, the only
thing that could prevent a valid mangling is identifier inspection, that is if a program
refers and acts according to identifier names. There are only few tools in C that could
be used for that purpose: preprocessor manipulations, when macro expansion uses
the operators # or ##, or a use of the reserved identifier __func__ for a function name.
The following lemma follows directly from the definitions:

Lemma 5.9 Let f be a mangling and P be a conforming C source without composed
identifiers and Modular C directives. Then P is stable iff f (P) is stable.

Inria

Modular C 35

1. Replace all occurrences of the string from the separator directive by :: .
2. Extract all separator, module, import, slot and �ll directives from the code.
3. Generate a top-sort of the import graph and store it in "MODNAME�imports.txt".
4. Replace abbreviations from module and import directives.
5. Split the code at a snippet directive into a regular and a snippet part.
6. In the snippet, if any, prefix all slot identifiers by MODNAME :: and replace the

snippet name by _Importer. Store the snippet in a file "MODNAME�snippet.c".
7. With the regular part:

a. To produce M+, let Si, i = 0, . . . , n � 1 be the snippets for M , listed as their
appearance in import directives. For all i = 0, . . . , n� 1:

Replace slot names in Si by their �ll definitions.
Replace _Importer by MODNAME.
Replace the corresponding import directive with Si.

b. Append predefined internal function and object definitions to M+.
c. In M+, prefix all remaining file scope identifiers by MODNAME.
d. Mangle all composed names to C source P = f (M+).
e. Extract P (P), D(P) and I (P) and store P (P) � D(P) as file "MODNAME.h"
f. In top-sort order, letH0, . . . ,Hn�1 be the headers of imported modules. Compile
the concatenationH0 � � �Hn�1 �P (P) �D(P) �I (P) to an object file "MODNAME.o".

8. Store the created files in an archive "MODNAME.a".
9. Create the necessary stubs for entry point and initialization, compile them into

separate object files and include them in the archive.

Figure 2 The high level description of the replacement procedure for module MODNAME.

In the following we will not specify the mangling f explicitly anymore. We will assume
that a such a mangling f is given and fixed.
We are now able to prove the first property of our replacement procedure. It

follows directly from the lemma above and from the fact that most of the replacement
procedure does not apply if there are no Modular C directives.

Lemma 5.10 Let P be conforming without composed identifiers or Modular C directives.
Then P is stable iff the replacement procedure compiles P to a valid archive file.

Now if we have a valid archive file, we just have to worry what happens to the
special functions that define entry points or similar.

Corollary 5.11 Let P be as above and stable such that it has an entry but no startup or
atexit directives, and such that it makes no reference to any external symbols. Then the
archive file can be linked to a valid executable that is functionally equivalent to P.

Now that we are able to compile some ordinary C code, we start to add Modular C
directives. The first is the module directive itself:

RR n° 8751

36 Jens Gustedt

Listing 7 Pseudo code for the stub functions that are generated during the replacement
procedure: composed identifiers here have to be replaced by mangled ones, C
library code should be replaced with code that implements the same effects
directly with identifiers that are strictly reserved.

1 /* code compiled in a separate . o f i l e , i f needed */
2 s t a t i c void _ModuleInitOnce (void) {
3 /* I n i t imported modules in topol . order */
4 IMPORT1::_ModuleInit () ;
5 IMPORT2::_ModuleInit () ;
6 . . .
7
8 /* Any of the fo l lowing three i s omitted i f
9 not provided in the module . */

10 atex i t (MODNAME::module_atexit) ;
11 at_quick_exi t (MODNAME::module_at_quick_exit) ;
12 MODNAME::module_startup () ;
13 }
14 void MODNAME::_ModuleInit (void) {
15 s t a t i c once_flag = ONCE_FLAG_INIT ;
16 cal l_once (&once_flag , _ModuleInitOnce) ;
17 }
18
19 /* code compiled in a separate . o f i l e , i f needed */
20 extern void MODNAME::_ModuleInit (void) ;
21 extern i n t MODNAME::EntryFunction (i n t argc , char * argv [argc + 1]) ;
22 i n t main (i n t argc , char * argv [argc + 1]) {
23 MODNAME::_ModuleInit () ;
24 return MODNAME::EntryFunction (argc , argv) ;
25 }

Lemma 5.12 Let M be a conforming module without composed identifiers and as only
Modular C directive a module directive that names the module with a non-composed
valid identifier MODNAME.
1. The following are equivalent:

M is stable.
f (M) is stable.
The replacement procedure compiles M to a valid archive file.

2. If M is stable, "MODNAME.h" is a valid conventional C header file that correctly declares
all exported definitions of f (M).

3. If M is stable and has an entry, the archive file can be linked to a valid executable that
is functionally equivalent to the original program defined by M .

Inria

Modular C 37

5.3 Stitching modules into one project

Modules are not conceived as isolated, monolithic software, but as components that
integrate into a whole system of other modules. To guarantee properties of a particular
module M we will have to argue about a long list of modules that are imported by M .
This list will usually contain all the modules that compose the C library and eventually
other more project specific modules.

Definition 5.13 An ordered set of valid modulesM = (M0, . . . , Mn�1) forms a consistent
project if the following hold:
1. All module names are mutually distinct.
2. All module imports stay in the setM .
3. The order inM is consistent with all import graphs.

Note that (2) implies that for all composed module names N0 :: � � � :: N‘�2 :: N‘�1

there must also be a module with name N0 :: � � � :: N‘�2 in the set. Also, (3) implies
that all import graphs for all modules inM are acyclic.
Now we are able to formulate the principal property of Modular C, namely that

compilation of modules such as described by the replacement procedure is equivalent
to the compilation of well specified regular TU.

Theorem 1 Let M = (M0, . . . , Mn�1) be a consistent project with completed sources
M+ = (M+

0 , . . . , M+
n�1). The following are equivalent.

1. For all i < n, Mi is a valid module such that all features to which M+
i refers are either

defined by M+
i or exported by M+

0 , . . . , M+
i�1.

2. For all i < n, f (M+
i) is a conforming TU such that all file scope identifiers are either

defined by f (M+
i) itself or declared by some P (f (M+

j)) � D(f (M+
j)) for some j < i.

3. For all i < n, the following concatenation of sources is stable:

P
�

f
�

M+
0

��

� D
�

f
�

M+
0

��

� � �P
�

f
�

M+
n�1

��

� D
�

f
�

M+
n�1

��

� f
�

M+
i

�

4. For all i < n, the replacement procedure compiles Mi to a valid archive file.

As a first step for a proof, consider the case that none of the module has snippets.

Lemma 5.14 Let M = (M0, . . . , Mn�1) be a consistent project without snippets, and
H0, . . . , Hn�1 be the headers files produced for them by the replacement procedure in
Step 7e. The following are equivalent.
1. For all i < n, Mi is a valid module such that all features that it refers to are either

defined by Mi or exported by M0, . . . , Mi�1.
2. For all i < n, f (Mi) is a conforming TU such that all file scope identifiers are either

defined by f (Mi) itself or declared in H0 � � �Hi�1.
3. For all i < n, the concatenation of sources H0 � � �Hi�1 � f (Mi) is stable.
4. For all i < n, the replacement procedure compiles Mi to a valid archive file.

RR n° 8751

38 Jens Gustedt

Proof Sketch: A proof can be done by induction on n. For n = 1 the statement follows
directly from Lemma 5.12.
Suppose that the statement holds for n0 � 1. For the induction step, observe that

the statement holds for i < n0 � 1 because of the induction hypothesis. So it remains
to be proven the statement holds for i = n0 � 1. But then (3) suffices to show that Mi

is valid and thus the equivalence holds. �

Proof of Theorem 1: With the previous lemma it suffices to show that the replace-
ment procedure is also compatible in the presence of snippets. This follows from the
following

All abbreviation replacements are effected before splitting regular part and snippet.
Identifiers from slot directives are effectively protected by renaming them to a name
that is local to the exporting module. On the importer’s side, these exporter-names
are then “filled” with the correct names when importing snippet Si in (7a).
The _Importer identifier stands for the name of the importer and is replaced consis-
tently when snippets are inserted. �

Other properties hold for the less central features of Modular C. We mention the
following without proof:

Theorem 2 If during initialization none of the startup functions exits preliminary
through exit, thrd_create, thrd_exit, longjmp or similar nor catches a trap and if all
of them finish eventually, the overall initialization procedure is finite, race free and
asynchronous signal safe.

6 A structured view of the C library

The C library as it stands has the disadvantage that it drags a lot of historical bag-
gage. That often makes its interfaces difficult to apprehend. Modular C provides the
opportunity for a structured view to C library features, by still remaining backwards
compatible. Strict encapsulation, makes such an approach feasible. We propose to
keep the old interfaces accessible through modules. We foresee to do this in three
levels:

1. Modules prefixed with C :: std provide the symbols in snippets: e.g., C :: std :: lib
for stdlib.h. They remain source compatible when previous #include directives are
replaced with such imports: the imported identifiers are accessible through the
same local names as before. E.g, there would exist a local name rand that resolves
to the symbol in the C standard library.

2. Modules with the same name but without std in the name export the identifier
through external declaration, such as C :: lib for stdlib.h. This would provide rand
through the identifier C :: lib :: rand.

3. To achieve real modularity we also provide a structured view to the same functions
and types through different modules.

Inria

Modular C 39

To see the latter let us look into the interface of a module C :: ulong that interfaces
all that is to know about the standard type unsigned long. The tool Cmod_tabular that
we have implemented for our reference implementation lists the following identifiers:

Terminal

0 > ./Cmod_tabular C#ulong.a

1 | C |ulong |+++++++++++++++++++++++++++++++++

2 | C |ulong |abs | extern

3 | C |ulong |ALIGN | evaluated; macro

4 | C |ulong |max | <-C#snippet#minmax; macro

5 | C |ulong |MAX | evaluated; macro

6 | C |ulong |maxv | <-C#snippet#minmax; extern

7 | C |ulong |min | <-C#snippet#minmax; macro

8 | C |ulong |MIN | macro

9 | C |ulong |minv | <-C#snippet#minmax; extern

10 | C |ulong |RANK | evaluated; macro

11 | C |ulong |SIZE | evaluated; macro

12 | C |ulong |ulong | ->ulong

13 | C |ulong |WIDTH | macro

14 | C |ulong |zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Other modules for the standard integer types implement the analogous identifiers.
MAX corresponds to the type’s maximum value, here ULONG_MAX, MIN to its minimum,
abs to a function that returns the absolute value etc. For real and complex floating
point types we applied a similar, adapted, strategy and provide interfaces in modules
such as C :: real :: �oat or C :: complex :: double.
For integer types, we see that the functionality that is provided is already much

richer than what the current C library provides. We have access to object-like macros
for the size of the type, its integer rank, its width and to functional macros such as
the minimum and maximum of a finite set of values (min and max) or to functions
operating on arrays (minv and maxv).
This systematic approach allows us to group common features for different types

together and provide type generic macros, implemented with C11’s _Generic keyword,
for all of them. E.g, the module C :: math contains type generic macros that work for all
arithmetic types such as abs or for all real types such as min and max. In our approach
the implementation most of these type generic macros is almost trivial:

1 #define abs (X) \
2 _Generic ((X) +0 , \
3 C::rea l:: f l o a t : C::rea l:: f l o a t ::abs , \
4 C::rea l::double : C::rea l::double::abs , \
5 /* some more . . . */ \
6 C::complex::ldouble : C::complex::ldouble::abs , \
7 C::unsigned : C::unsigned::abs , \
8 /* some more . . . */ \

RR n° 8751

40 Jens Gustedt

9 C::l long : C::l long::abs) (X)

Here the implementation makes the choice to select the expression only on the
promoted type (the +0 does that). By that no default branch of the generic expression
is necessary and the compiler indicates an error if this macro is used with another
type, as e.g., a pointer type.
Let us now list some groups of interfaces that should receive a special treatment.

This is not intended to prescribe a particular way how this must be done, but to
demonstrate the potential of our approach. The exact realization of this project needs
a lot of discussion and ideas from the community. In its current state, our proposal
has more than 160 modules for the C library.

6.1 Basic types

As indicated we foresee one module for every basic type, and for convenience we add
one for each of the four semantic typedef, namely size_t, ptrdi�_t and [u]intmax_t.
Since with modules we don’t have the problem of uniqueness of identifiers we propose
to drop the suffix _t for the names of these types for this structured interface.
All sensible functionality of these types is interfaced and regrouped into type generic

macros in C :: math where possible. This concerns also all the mathematical functions
from math.h or tgmath.h. C :: math provides type generic interfaces for all of these,
with default branches resolving to the variant in C :: real :: double.

6.2 String processing

A module C :: str provides type generic interfaces for the string functions that in the
current C library have prefix str (regular strings) orwcs (wide character strings). Some
of the original functions have the additional problem that they drop const-qualifiers
where they shouldn’t.

double strtod (char const * s , char ** end) ;

This function, e.g., scans a const-qualified string s for a double number. If end is
provided, after the scan *end will point to the ending position inside the same string.
By that the const-qualification is lost. With type generic macros we may easily avoid
that problem by using two different functions (respectively 4 including wcs variants)

double strtodm (char * s , char ** end) ;
double str todc (char const * s , char const ** end) ;

and glue them together with a _Generic expression.

6.3 Feature test

The current approach for feature test of the C library is tedious and error prone. E.g.
in the transition phase from C99 to C11, many compilers accepted options to switch
to C11, whereas the corresponding C library didn’t implement all the features, yet.
In such situations it is not clear, if the compiler or the C library should provide a

Inria

Modular C 41

__STDC_NO_THREADS__ macro, for example. So simple code such as the following
didn’t work.

i fndef __STDC_NO_THREADS__
include <threads . h>
#endif

Both types of errors occurred: an non existing header file causes an error if the
compiler implementers haven’t yet come to provide the macro, or a feature in an
alternative C library would not be detected because the macro was set wrongly. Sorting
out different versions and features of the implemented C standard is tedious, and
often the only partly viable solution is a long list of special cases for different compilers,
libraries and releases.
For Modular C we request that all the standard modules must exist. This can either

be a module that provides the feature or announces through the feature macro that it
is not implemented. We already have seen a use of that in Listing 3. It imports C :: thrd,
which is, as all imports, unconditional. The code itself then can be tuned with by
asking for the preprocessor macro C :: thrd :: NO_THREAD.
So the least that a provider of a C library has to do is to implement an almost empty

module. There, for every optional feature it has just to provide the correct feature test
macro.

6.4 Snippets and templates

Most of the modules that implement the features of the C library should not contain
snippets, simply because we don’t want to have the identifier name space of the user to
be polluted by an ever growing amount of rules. Nevertheless we need some modules
with snippets.

First of all, legacy code that already uses features of the C standard library should be
able to continue to do so. For that purpose we propose a whole hierarchy starting with
C :: std :: . These are designed to inject all features of a corresponding C library header
directly to the importer. E.g. there is a module C :: std :: io module that interfaces
all features of <stdio.h> . The modules of this hierarchy should only be used during
transition from legacy code to Modular C.
But, the C standard library should also contain some modules that provide param-

eterized functions or types. As a convention we have chosen the prefix C :: snippet
for code that just provides an interface that is derived from the module name. If in
addition there are slot directives that must be specialized by the importer with �ll
directives, we use the prefix C :: tmpl.
Currently, there are C :: snippet :: init, C :: snippet :: alloc and C :: snippet :: minmax as

already mentioned. Also, there are C :: tmpl modules to wrap qsort and bsearch and
to implement simple list data structures.

RR n° 8751

42 Jens Gustedt

7 The transition from C to Modular C

7.1 A reference implementation

The relative simplicity of our approach has permitted to implement a first prototype
of a compiler front end and C library interface relatively fast; in total we invested
some months of qualified work force into it. The implementation was undertaken
in a Linux environment and heavily relies on POSIX and Gnu tools: sh for the front
end itself, sed and the C preprocessor for text processing, nm and objcopy for the
manipulation of binary object files, ar for archive management.13
By integrating these tools, we were able to create a front end that should be mostly

compiler and C library independent, if both comply to C11. We tested it with different
versions of two different compilers, gcc1⁴ and clang.1⁵

For the structure of our interface to the C library see the previous section.The tools
that ease the creation of these wrapper modules are described below. We tested them
with two different C libraries, glibc1⁶ and musl.1⁷

7.2 Interfacing existing libraries

Modular C as we presented it so far only describes the language extension itself and
not how existing software packages should be interfaced such that they fit into the
framework. In particular, to provide an operational environment we have to interface
the C library of the platform with module interfaces as described above. This has been
done by specifying and implementing an additional set of directives, as can be seen
in Listing 8.
Our idea is to capture the dependency from a traditional header file in a wrapper

module. For relatively simple code, this can be achieved automatically: when fed with
a .h file, a special compilation mode is triggered that generates a shallow wrapper
module that is suitable to encapsulate the existing TU, .c. Such a wrapper, generated
automatically or manually, may use some additional directives as follows.
One or several mimic directives may refer to a traditional header files. Information

from these can then be extracted textually or by compiling short test programs. We
provide an additional set of directives:

de�ne extracts a macro definition.
typedef extracts a type.
alias adds a mangled alias for an existing symbol to the symbol table.
defexp evaluates its expression on the right at compile time and defines a macro
with that computed value.

13 Access to the sources is available at cmod.gforge.inria.fr
14 http://gcc.gnu.org
15 http://clang.llvm.org
16 http://www.gnu.org/software/libc/
17 http://musl-libc.org

Inria

http://gcc.gnu.org
http://clang.llvm.org
http://www.gnu.org/software/libc/
http://musl-libc.org

Modular C 43

Listing 8 An extract of the implementation of a C library interface.

1 #pragma CMOD module dbl = C::rea l::double
2 #pragma CMOD import minmax = C::snippet::minmax
3
4 #pragma CMOD mimic <math . h>
5 #pragma CMOD mimic < f l o a t . h>
6 #pragma CMOD l i n k �lm
7 . . .
8 #pragma CMOD define NAN
9 #pragma CMOD typedef eval = double_t

10 #pragma CMOD defexp PI = 4 .0* atan (1 . 0)
11 #pragma CMOD a l i a s acos
12 . . .
13 #pragma CMOD declarat ion
14 typedef double dbl ;
15 double (acos) (double) ;

defstruct extracts predefined struct types and ensures size, alignment and exact
offset positioning of all fields.

The directive defexp (for “define expression”) proved to be quite practical. To
evaluates the expression that is written on the RHS of the = we create a short C
program that is run once to print out the result of the evaluation. By this, platform
and type information is extracted only once, during the compilation of the interface
modules, and the compiled modules present similar features as precompiled header
files.
Most of these tools are implemented such that they encapsulate all necessary

information in the compiled module. Aliases that are specified with the alias direc-
tive are implemented as linker replacement. In our example the (mangled) symbol
C :: real :: double :: acos would act as a link time alias for the C library function acos.
Overall, interfacing existing C libraries has minimal compile time and link time

overhead but no run time overhead. As can be seen in some of the examples, we apply
the similar renaming ideas to these directives. E.g, the typedef directive extracts the
declaration of double_t from the standard header and then provides a local definition
of a type C :: real :: double :: eval. All of this is still surprisingly fast: due to the efficiency
of the tools that we use a compilation of the about 120 module files that today compose
our C library interface takes only 33 seconds on a modern laptop.
Besides the C library, another example for such an interface to an existing library

that we implemented with Modular C is the Gnu scientific library, gsl. Here, the main
burden was not the generation of wrappers itself, but to come up with a naming
scheme that deals with the inconsistencies of gsl.

RR n° 8751

44 Jens Gustedt

Listing 9 An example of the module structure for a project migration.

1 #pragma CMOD module l i s t = proj:: l i s t
2 /* Add analogous imports for a l l standard headers . */
3 #pragma CMOD import C::std::io
4
5 #pragma CMOD declarat ion
6 /* Put a l l types and macros from " p r o j _ l i s t . h " , here . */
7
8 #pragma CMOD d e f i n i t i o n
9

10 /* Copy most of " p r o j _ l i s t . c " , here .
11 Omit extern decl for i n l i n e funct ions . */

7.3 A migration path for existing C projects

Migration of existing software projects to new tools is probably never simple. Never-
theless we think that for projects that are already well interfaced and structured the
transition to Modular C should be feasible.
First of all, Modular C has a “compatibility” mode that ensures that most C files that

just include some standard headers can be compiled and produce a valid compiled
module. In particular, any legacy #include directive is replaced by a proper import
that emulates it. Such a compiled legacy module uses the external file name for the
module name, and can easily be imported by other Modular C code.
There are several possibilities when making some C software accessible for Modular

C. The first would be to just provide wrapper modules, that is modules that just extract
header information from the existing .h files of the project and ensure the proper
linking with the unmodified library. This can be done in a similar way as we have
described above for the C library and gsl. By following these example, it should be
possible for an experienced programmer to interface any reasonable C application
header within an hour of work.
The source migration of a C project then can be done as follows. Let us suppose

that we have a project that already applies a suitable naming scheme to the interfaces
that it provides. Say the overall project is called proj and it contains functions and
types that use an underscore convention, e.g., proj_list for a list type, proj_list_init for
an initialization function etc. First we have to create a module for the top level of the
project:

#pragma CMOD module proj
#pragma CMOD l i n k � l p r o j

Then we start creating a module for each functional unit that we want to export.
We start with those at the core of our project which don’t need to import other parts
of the project, see for example Listing 9. A successful compilation produces an archive
proj-list.a.

Inria

Modular C 45

Applying the nm utility on it may complain about some components in an unknown
format but then it should show something similar to the lines

Terminal

0 > nm -C proj#list.a
1 proj#list.o:
2 0000...0000 W proj_list_proj_list_init
3 0000...0000 T _C::proj::list::proj_list_init

We have two entries in the symbol table, one for the mangled name (translated
into C++’s composite naming scheme) and an alias for the conventional name,
here proj_list_proj_list_init. We get rid of the duplicated name prefix by removing all
proj_list_ prefixes in the source and then by substituting proj_list by list for the type
itself.

1 #pragma CMOD module l i s t = proj:: l i s t
2 /* Add analogous imports for a l l standard
3 headers . */
4 #pragma CMOD import C::std::io
5
6 #pragma CMOD declarat ion
7
8 /* Put a l l type declarat ions and macros from " p r o j _ l i s t . h " , here

,! . */
9 s t ruc t l i s t {

10 l i s t * next ;
11 /* something */
12 } ;
13
14 #pragma CMOD d e f i n i t i o n
15
16 /* Copy most of " p r o j _ l i s t . c " , here .
17 Omit extern decl . for i n l i n e funct ions . */
18 l i s t * i n i t (l i s t * l) {
19 /* do something */
20 return l ;
21 }

By that the first the nm output should have changed to

Terminal

0 proj#list.o:
1 0000...0000 W proj_list_init
2 0000...0000 T _C::proj::list::init

RR n° 8751

46 Jens Gustedt

By that, have created a Modular C object file that has all correct external symbols
and that we can use instead of the one that was previously produced from proj_list.c.
Analogously, we can then proceed to transform all units that will import proj :: list

in a similar way. At the end we should find ourselves with a collection of .a files
that implement the same symbols as our traditional library. It still is API and ABI
compatible with the original library.
Once this transition is completed, all features of Modular C may be used for new

developments or for maintenance.

7.4 Implementing new projects in Modular C

To show the practical advantages of our approach, we give the example of two
projects that have been entirely implemented with Modular C. This reports on personal
experience, so by nature much of the following is biased and should be taken with the
necessary precautions. One of the projects, EiLck,1⁸ had first been developed without a
particular need of specific Modular C features, but see below. The second arbogast [3],
uses sophisticated features such as snippets, precompilation, code unrolling and
expression rewriting, that would have made it difficult to be implemented with
traditional C alone.

EiLck (Exclusive–Inclusive Linear Locks) is a standalone library for an inter-thread
lock and data access mechanism, that has been implemented newly from the ground
in Modular C. It consists of about 30 source files that implement a relatively flat
module hierarchy. These

implement lock objects (on heap, as files or segments) and lock handles,
hide the implementation specific details (bindings to Linux’ futex calls)
give several simple examples for usage with different thread libraries (POSIX, C11
and OpenMp)
provide interface stubs for native C and C++ projects.
The implementation of EiLck has been full of agreeable surprises, it went even more

smoothly than expected: the traditional approach of dividing the project in functional
units was easily modeled and enforced throughout the development. The absence of
implicit typing and indirections eases compiler optimization and as a result we have
reliable and efficient binaries.
After the core of the new library had been finished, it was easy to add type generic

interfaces in Modular C (via snippets) and C++ (via template stubs). In a recent
development, a new module eilck :: task and extension directives amend and insert
have been added. They implement a system for automatic memory access classification
and task parallelization that would have been difficult to implement directly in C or
C++ with the same development and execution efficiency.

arbogast is a new tool for higher order automatic differentiation (HOAD) of C
code. It uses a lot of Modular C features such as generic interfaces with snippets

18 http://cmod.gforge.inria.fr/eilck.html

Inria

http://cmod.gforge.inria.fr/eilck.html

Modular C 47

(Taylor polynomials with different base types) and their explicit instantiation, code
replication, or compile-time constant expansion to produce efficient executables.
But most importantly, the facility of import replacement allows to write numerical
Modular C code that can be used “directly” or as “differentiated” code: a symbolic
type T in such code can seamlessly be filled by using double to compute numerical
quantities, or by using a Taylor polynomial type to compute a series of derivatives up
to a chosen degree. The Modular C directive “context” that had not been presented
here, allows to mark expressions such that all arithmetic operations (+ , * etc) can be
rewritten as Taylor operations if necessary.
All of this would have been difficult to implement in C alone. The principal competi-

tor system uses C++ with operator overloading and is about an order of magnitude
slower than arbogast on many examples.

8 Conclusion

Our proposition Modular C adds modularity and reusability to standard C by introduc-
ing a simple naming scheme. It allows a free choice of non-reserved identifiers for all
features that are exported by a module and stitches these together by a set of directives.
The change to C is minimal and in fact we were able to prove the equivalence of code
written for Modular C to a large subset of valid C code. Related features of a software
project can be grouped and accessed together. This is done without introducing new
syntactical constructs to the core language, and allows for a grouping of features that
is more flexible than classes in traditional object-oriented languages by e.g. centering
the focus of a module around a single function. Parameterized code reuse is provided
through snippets, small parts of code that can be injected to an importing module and
that are written in conventional C, no extra syntax is required.
Modular C has additional features that fall out from the global approach almost

effortlessly, but can nonetheless be helpful tools for future software projects. E.g.,
there is a simple dynamic module startup and cleanup scheme and also a structured
approach to the C library. The latter enables us to avoid some shortcomings of the
existing C library interface, namely problems with const qualification and lack of type
safety for generic functions such as qsort.
Last but not least we have shown that these ideas can be implemented effectively

on top of existing C platforms and that existing software projects can be migrated to
Modular C with reasonable effort.

RR n° 8751

48 Jens Gustedt

References

[1] M. Blume and A. W. Appel. Hierarchial modularity. ACM Transactions on
Programming Languages and Systems, pages 812–846, 1999.

[2] Tiobe Software BV, 2015. monthly since 2000. URL: http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html.

[3] Isabelle Charpentier and Jens Gustedt. Arbogast: Higher order automatic dif-
ferentiation for special functions with Modular C. Optimization Methods and
Software, pages 1–25, February 2018. URL: https://hal.inria.fr/hal-01307750.

[4] Bdale Garbee et al. (editors). A brief history of debian. Web page, 2017. URL:
https://www.debian.org/doc/manuals/project-history/.

[5] S. I. Feldman. Make – a program for maintaining computer programs. In Unix
Programmer’s Manual. Bell Laboratories, 1979.

[6] Doug Gregor. Modules. Apple Inc., Dec 2012. URL: http://llvm.org/devmtg/2012-
11/Gregor-Modules.pdf.

[7] D. Richard Hipp. Makeheaders, 1993. URL: http://www.hwaci.com/sw/mkhdr/.
[8] JTC1/SC22/WG14, editor. Programming languages - C. Number ISO/IEC 9899.

ISO, cor. 1:2012 edition, 2011. URL: http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1570.pdf.

[9] Chris Laffra. Where did eclipse come from? FAQ, 2006. URL: https://wiki.eclipse.
org/.

[10] Rob Pike. Go at google. In Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH ’12, pages 5–6, 2012. see also http://talks.golang.
org/2012/splash.article. URL: http://doi.acm.org/10.1145/2384716.2384720, doi:
10.1145/2384716.2384720.

[11] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, , and Eric Eide. Knit:
component composition for systems software. In Proceedings of the 4th conference
on Symposium on Operating System Design & Implementation (OSDI’00), volume 4.
USENIX Association, 2000.

[12] Keith Schwarz. Advanced preprocessor techniques, 2009. URL: http://www.
keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf.

[13] Saurabh Srivastava, Michael Hicks, Jeffrey. S Foster, and Patrick Jenkins. Modular
information hiding and type-safe linking for C. IEEE Transactions on Software
Engineering, 34(3):357–376, 2008.

[14] Richard M. Stallmann. Emacs – the extensible, customizable, self-documenting
display editor. Technical Report 519a, MIT AI Lab, 1981. URL: https://dspace.mit.
edu/bitstream/handle/1721.1/5736/AIM-519A.pdf.

[15] Linus Torvalds et al. Linux kernel coding style, 1996. evolved mildly over the
years. URL: https://www.kernel.org/doc/Documentation/CodingStyle.

Inria

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://hal.inria.fr/hal-01307750
https://www.debian.org/doc/manuals/project-history/
http://llvm.org/devmtg/2012-11/Gregor-Modules.pdf
http://llvm.org/devmtg/2012-11/Gregor-Modules.pdf
http://www.hwaci.com/sw/mkhdr/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://wiki.eclipse.org/
https://wiki.eclipse.org/
http://talks.golang.org/2012/splash.article
http://talks.golang.org/2012/splash.article
http://doi.acm.org/10.1145/2384716.2384720
http://dx.doi.org/10.1145/2384716.2384720
http://dx.doi.org/10.1145/2384716.2384720
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/5736/AIM-519A.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/5736/AIM-519A.pdf
https://www.kernel.org/doc/Documentation/CodingStyle

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	1 Introduction
	1.1 Lack of encapsulation
	1.2 Lack of reusability
	1.3 Limited composability
	1.4 C needs a specific approach
	1.5 Our contributions

	2 All is about naming
	2.1 Exported features
	2.2 Avoiding identifier clashes
	2.3 Abbreviations
	2.4 The module name
	2.5 Composing names on a finer granularity
	2.6 Mangling

	3 The import graph
	3.1 Import is binary
	3.2 Module initialization and cleanup

	4 Code sharing
	4.1 Inline functions

	5 A formal description
	5.1 Source reorganization and stability

	6 A structured view of the C library
	6.1 Basic types
	6.2 String processing
	6.3 Feature test
	6.4 Snippets and templates

	7 The transition from C to Modular C
	7.1 A reference implementation
	7.2 Interfacing existing libraries
	7.3 A migration path for existing C projects
	7.4 Implementing new projects in Modular C

	8 Conclusion

