Cheap and Cheerful: Trading Speed and Quality for Scalable Social Recommenders

Anne-Marie Kermarrec 1 François Taïani 2, 1, * Juan Manuel Tirado Martin 1
* Auteur correspondant
1 ASAP - As Scalable As Possible: foundations of large scale dynamic distributed systems
Inria Rennes – Bretagne Atlantique , IRISA-D1 - SYSTÈMES LARGE ÉCHELLE
Abstract : Recommending appropriate content and users is a critical feature of on-line social networks. Computing accurate recommendations on very large datasets can however be particularly costly in terms of resources , even on modern parallel and distributed infrastructures. As a result, modern recommenders must generally trade-off quality and computational cost to reach a practical solution. This trade-off has however so far been largely left unexplored by the research community, making it difficult for practitioners to reach informed design decisions. In this paper, we investigate to which extent the additional computing costs of advanced recommendation techniques based on supervised classifiers can be balanced by the gains they bring in terms of quality. In particular , we compare these recommenders against their unsupervised counterparts , which offer lightweight and highly scalable alternatives. We propose a thorough evaluation comparing 11 classifiers against 7 lightweight recommenders on a real Twitter dataset. Additionally, we explore data grouping as a method to reduce computational costs in a distributed setting while improving recommendation quality. We demonstrate how classifiers trained using data grouping can reduce their computing time by 6 while improving recommendations up to 22% when compared with lightweight solutions.
Type de document :
Communication dans un congrès
Proceedings of the 15th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS-2015), Jun 2015, Grenoble, France. Springer International Publishing, pp.14, 2015, 〈http://link.springer.com/book/10.1007/978-3-319-19129-4〉. 〈10.1007/978-3-319-19129-4_11〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01170757
Contributeur : François Taïani <>
Soumis le : jeudi 2 juillet 2015 - 12:11:27
Dernière modification le : mardi 16 janvier 2018 - 15:54:13
Document(s) archivé(s) le : mardi 25 avril 2017 - 22:36:12

Fichier

summary.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anne-Marie Kermarrec, François Taïani, Juan Manuel Tirado Martin. Cheap and Cheerful: Trading Speed and Quality for Scalable Social Recommenders. Proceedings of the 15th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS-2015), Jun 2015, Grenoble, France. Springer International Publishing, pp.14, 2015, 〈http://link.springer.com/book/10.1007/978-3-319-19129-4〉. 〈10.1007/978-3-319-19129-4_11〉. 〈hal-01170757〉

Partager

Métriques

Consultations de la notice

520

Téléchargements de fichiers

71