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(@) Coarse frame- (b) Fine FEM simu- (c) Mixing a coarse frame-based simulation to a local FEM patch
based simulation lation with our method

Figure 1: Using a hook to catch a coarsely discretized frame-based octopus is challenging due to the lack of deformation at the contact point
(1a). One could resolve this problem with a high-resolution set of Pnite elemidatst, at the expense of runtime performance and with the
introduction of spurious secondary motion. Multifarious Hierarchies of Mechanical Models allow an artist to add arbitrarily located detall
simulations to the underlying coarse deformation models in order to produce the desired regult. (

Abstract creatures and scenes that appear plausible while simultaneously de-
fying belief. In truth these effects depend on artists carefully sculpt-
We present a new framework for artist driven level of detail in solid ing their simulation results as much as they do on the simulations
simulations. Simulated objects are simultaneously embedded inthemselves. It is not uncommon for an artist to produce a highly
several, separately designed deformation models with their own in- scripted animation and then use a physical simulator to augment
dependent degrees of freedom. The models are ordered to applyit with secondary motion (skin wrinkling, muscles Bexing, metal
their deformations hierarchically, and we enforce the uniqueness of bending). And, like a painter adding the Pnishing strokes to a can-
the dynamics solutions using a novel kinetic bltering operator de- vas, a visual effects artist has an innate understanding of the scale,
signed to ensure that each child only adds detail motion to its par- location and type of motion that should be added to the bnal scene.
ent without introducing redundancies. This new approach allows ) ) . o )
artists to easily add Pne-scale details without introducing unneces-Adapting the level-of-detail of a simulation is a well studied prob-
sary degrees-of-freedom to the simulation or resorting to complex €M in mechanics. Currently this problem is addressed with spe-
geometric operations like anisotropic volume meshing. We illus- cialized algorithms which can be divided into two classes: rebne-
trate the utility of our approach with several detail enriched simula- Ment approaches and coupled approaches. Rebnement approaches
tion examples. alter the number of degrees of freedom (DOFs) in the simulation as
a function of performance and accuracy. On the other hand, cou-
pled approaches avoid rebnement by using two (or more) simula-
tion techniques which operate on different scales. These methods
are common for turbulence simulation in Buids wherein a coarse
RBuid simulation is coupled (one-way or two-way) to a bPne scale
turbulence model. However, both rePnement approaches and cou-
. . . pling approaches can be difbcult for an artist to control as they can
Keywords: Physically Based Animation, Deformable Solid, Mul-  atect global changes in the simulation, requiring further parameter
tiscale Continuum Mechanics tuning to recapture underlying coarse motions. Unlike these previ-
ous approaches, what we seek is simulation paintbrush that an artist
1 Introduction can use to augment kinematic or coarse dynamic animations with
new details in an intuitive fashion.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-

ometry and Object ModelingNPhysically based modeling 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and RealismN
Animation;

Physics-based animation has become an important arrow in the

quiver of the visual effects practitioner B routinely used to produce In this paper we propose a new coupling approach for multi-scale,

artist controllable simulation: the Multifarious Hierarchy of Me-
chanical Models (MHMMs). Multifarious Hierarchies are a gen-
eral approach that allows a motion to be decomposed using a set of
arbitrary, overlapping degrees-of-freedom. Analogous to the lay-
ers of popular image editing tools, MHMMs allow an artist to layer
spatially varying simulations in order to carefully add secondary
detail to coarse motions (Fi). Using a novel kinetic bltering ap-
proach, MHMMs avoid kinematic redundancy in the displacement
discretization allowing for intuitive augmentation of the motion.




Furthermore, the geometry in the overlapping region experienceset al. 2000. Tournier et al. 014 introduced a h-adaptive ap-
a hierarchically combined deformation Peld and this eases model-proach for frame-based deformable solids allowing coarsening and
ing since no geometrical operations are required to achieve the cou-rePnement. Grinspun et al. 2Q03 present a h-hierarchical ap-
pling. Finally, MHMMs increase computational efpciency because proach which reformulates remeshing as basis rePnement. Their
the total number of system degrees-of-freedom can be optimally method is generally applicable to all element types but is limited
chosen by the artist B no more than necessary will be used. to a single mechanical model and aligned levels of detail. This can

. . require complicated mesh coarsening as a preprocessing stage. P-
MHMMs allow an artist to produce robust, high-performance, aqaptive methods have been used with success to simulate Ruids
multi-scale simulation results in an intuitive, layered fashion B 51 coarse gridsgdwards and Bridson 201#iowever for compli-
yielding whole simulation results that are greater than a sum of their -5ted domains such as solid objects, difbculties can arise. Because

parts. the polynomial basis is rebPned, p-adaptive methods begin with a
coarse mesh that reasonably captures the geometry. As such, mesh
Contributions generation can be problemati&4als et al. 2004

Next we review coupling approaches which attempt to add detail
to a simulation by OgluingO differing representations of an object
together. These methods can be further divided into surface embed-
ding methods, attachment methods and overlaying methods. Sur-
face methods augment coarse volumetric simulations with high-
¥ Controllable Users can add additional detail to a simulation resolution surfaces. Attachment methods provide a mechanism for
at specibed locations and at specibed scales. coupling two different, non-overlapping simulations and overlaying
¥ Spatially-Varying LayersDeformation models can be applied methods use the superimposition of overlapping discretizations to
globally or locally allowing detail to be limited to appropriate ~ 2dd detail.
regions of the domain (i.e. at contact points etc...).

The major contribution of this work is a general formulation for the

layered addition of secondary motion to coarse animations. MH-
MMs allow for efbcient, detailed simulations and in comparison to
other methods, have the following advantages:

. ) Surface embedding methods are popular in graphics and are used

¥ Arbitrary Number of LevelsAny number of overlapping lay- {5 retain reasonable surface detail for rendering while achieving fast
ers can be used to craft the desired animation. simulation speed. Miler et al R00J use barycentric coordinates to

¥ Layers of Varying Dimension and MateriaCombine rods,  map a coarse deformation to a high resolution surface mesh. Simi-
shells and volumetric models seamlessly; the detail can be |ar approaches have been used to simulate viscoelastic objects with
used to represent a different material from the coarse model thin features Woijtan and Turk 200Bas well as liquids ojtan

¥ Efpcient MHMMs can be decomposed into independent sys- et al. 201]. Wojtan et al P008 2011 use the surface to track fea-
tems that can be solved in parallel at runtime tures but limit its inBuence on the underlying simulation (limited to

¥ General Any combination of degrees-of-freedom (particles, computing surface tension forces). Some recent approaches proce-
rigid and afpne frames, modes...) or deformation models can durally deform the embedded surface, either from geometric anal-

be combined into a hierarchy ysis [Rohmer et al. 201](r based on example¥\ang et al. 2010
¥ Fully-Coupled Forces and motions applied at one hierarchy Seiler and Harders 201Zurdo et al. 201B In these methods the
level are propagated to the rest of the hierarchy Pne detail cannot fully respond to user manipulation, relegating it

) ) ) ~ to a more cosmetic role. In general these methods only deal with
The remainder of our paper is organized as follows. Background is high-resolution detail at the surface of an object.

provided in section® and3, while our contributions are explained

in sections4 through5. Section6 is reserved for implementation  Attachment methods have also received a great deal of focus since
details while results are presented in secfion Sifakis et al P007 proposed a general methodology to connect
models on mesh boundaries. Twigg et al proposed Point Cloud
Glue [201( to easily attach any sets of points using the Procrustes
transform. Because simulations of differing resolutions can be at-

) ) ) tached, this method could be used to resolve details at certain parts
Adding relevant bne-scale details has long been an important areayf the model. However, attachment methods lack a mechanism for
of research in graphics and engineering. As in the introduc- gealing with overlapping discretizations and so dynamic level-of-
tion we can divide previous methods into rebnement approachesgetajl in a particular simulation domain would require an additional
and coupling approaches. We begin by reviewing rebnement ap-repnement algorithm. Furthermore, there are complications when
proaches which can themselves be categorized by their degree of hy|iowing the detail level to be fully dynamic. Other methods based
adaptivity and p-adaptivity. H- and p-adaptivity describe the ways o substructuring are also commonly applied in engineering and
in which simulation methods attempt to balance bdelity and per- graphics Barbi§ and Zhao 20L1Kim and James 2032 Often
formance. H-adaptive methods concern themselves with introduc- per-component reduced models are used to improve performance.

ing new degrees-of-freedom by splitting individual elements while  Again an additional algorithm for controlling level-of-detail within
p-adaptive methods increase the degree of the polynomial approx-e5ch substructure is required.
Il

imation used for beld variables. Both approaches have been we

studied. In terms of h-adaptivity, Debunne et 41999 introduce Overlapping methods have also been explored since the early work
a multi-resolution, particle-based methodology for simulating lin- of Faloutsos et al]997 where local Freeform deformation (FFD)
early elastic objects. They provide a formalism for dynamically lattices are embedded into larger global ones to allow for Pne
adding and removing particles in order to maintain a desired level grained animator control. This method illustrates a particular in-
of accuracy, and to locally switch between resolutions. Other h- stance of an MHMM and in our paper we focus on generalizing
adaptive remeshing approaches for Finite Element Simulation havethe concept to layerings of arbitrary discretizations. Two-way cou-
been proposed, most recently in the context of thin shells, elasto- pled algorithms were initially explored by Terzopoulos and collab-
plastic simulation and mixed Ruid solid simulatio’Wifke et al. orators [1988 199(Q using hierarchies of superquadrics imposed
201Q Narain et al. 2012Clausen et al. 202 Narain et al. 201B on rigid frames. More recently, Remillard et al.2013 embed
However, these techniques are limited to triangular and tetrahedrala high-resolution thin shell inside coarse FEM to resolve volume
meshes which are unsuitable for many applicatidBehftschko objects with stiff hulls. The mechanical coupling is perfomed us-

2 Related work



from their initial coordinates), changes over timeso do the dis-
placements of the embedded, or slave, points, The mapping
relation is:

ue(t) = J (q(t), X) 1)

For the sake of clarity, we will drop the dependence am subse-
quent notations. Slave DOFs may in turn be the masters of other
(a) Discretization (b) Kinematic dependencies sets of DOFs, forming a hierarchy with the root as only set of mas-
ter DOFs (Fig2). The velocitiew . at the embedded level are given
Figure 2: Structure of a traditional model. Control nodes (here, by:
moving frames), control surface vertices (empty circles) and vol- Ve =J0 2
ume sampling points (crosses). Contact forces are applied to sur- Ly ) ) )
face points (Plled circles) controlled by the surface vertic@s): ( whereJ = % is the Jacobian matrix of the mapping. Note that
Discretization with control nodes and sampling poin®h)( Kine- positions and velocities are only propagated Otop-downO, from the
matic dependencies. master to the slave DOFs. The Jacobian matrix is generally rect-
angular, and so mapping the velocities in the opposite direction re-
quires solving an inverse kinematics problem, which often has no
unique solution, if any. Conversely, the forces and impulses are
only propagated bottom-up. L&t be forces at the embedded level,
andfq the corresponding forces at the master level. The Principle of
Virtual Work states that the power of the forces must be the same at
the two levelsv/ f. = @ fq, for any value ofv.. This, combined
with Eq2, implies that

ing position constraints specibc to the behavior of the stiff hull.
Harmon et al 2013 enrich a space of modal deformations (see
Barbic et al p003) with analytically debned detail functions (for

a point force applied to an elastic half-space) to increase the ex-
pressivity of the model. These methods are very much in line
with the spirit of our work but are, again, limited to particular in-
stances of MHMMs (rigid modes and deformable superquadrics,
poking functions adding details over modal models). Finally, the
Eulerian-on-Lagrangian method-4n et al. 2013Fan et al. 201}
allows the coupling of a Pne scale Eulerian simulation to any coarse

scale Lagrangian simulation. The method is general but limited to X X . :
debned as a matrik ¢, the equivalent matrix at the top level is

Eulerian-Lagrangian coupling. Additionally the Eulerian simula- T . L
tion must cover entire deformable objects, meaning that detail can-M a = 3~ M eJ. While the complete derivation of all the proper-

not be added locally thus negating any potential performance gains!i€S of embeddings is out of the scope of this paper, we note that
(i.e in Fan et al. 2014 entire groups of muscles are covered with the above relations between forces and displacements at different
simulation grids rather than one muscle being covered by many Ievels. of the kinematic hierarchy hold for any set of generalized
grids) . Conversely, the focus of MHMMSs is to provide a princi- coordinates and forces.

pled, controllable, layered methodology for adding local detail to

coarser simulations, something that none of the previous work in 4 Hierarchies of Embeddings

this area provide.

fq= I fe. (3)

Mass and stiffness matrices can be transferred Obottom-upO (from
slave to master DOFs). For instance, if the inertia of the object is

4.1 Principle
3 Embeddings

MHMMs consist of augmented embedding hierarchies. Rather than
This section provides background on embeddings, introduces nota-maintaining a strict master-slave relationship between embedded
tions and motivates our approach. Embeddings are intuitive B if oneDOFs, we instead augment the embedding with its own master
is playing a game of darts, the darts themselves become embedde®OFs so that it can contribute new motion to the animation. One
in the board after each toss. Moving the board then causes all theway to perform this augmentation would be to use a simple sum
darts to move with the same rigid motion. of embeddingsie(t) = J1(qa(t), X) + J2(q2(t), X). For small
displacements this produces acceptable results, but its uncorrelated
terms result in unacceptable artifacts as soon as large deformations
or rotations occur.

A mathematical embedding (often used for animatiCafell et al.
2002 Galoppo et al. 200¢ formalizes this idea that the motion of
an embedded mathematical object (a 3D point, deformation gradi-
ent, etc..) is inBuenced by the movement of some encapsulatingln order to build an augmented embedding suitable for animating
domain (such as a rigid transform, a per-vertex displacement beldlarge deformations we instead modify Edpy using a second em-

or an afpne blending). More generally, any mapping from one set bedding to change the material coordinates used by the prst:

of DOFs to another, such as vibration modes to local strains, can

be used to build an embedding. Embeddings are particularly use- Ue = Jc(Qe, X + Ja(da, X)) (4)
ful for synchronizing the motion of the embedded object with that
of the encapsulating one. In this paper we use the teaster to whereJ ¢(qgc, X) is a coarse displacement beld ahg(qq, X) is

refer to the DOFs of the encapsulating object (the dart board) anda new model used to add detail, as if a deformable object were
the termslaveto refer to the DOFs of the embedded object (the embedded in the coarse model. In this approach, the detail changes
darts). Slave DOFs are kinematically OslavedQrtaster DOFs, the material coordinates used in the coarse model. We stress that
hence their name. Furthermore we use the teoarseto refer to such a hierarchy of embeddings can be superimposed on any mesh
master DOFs that parameterize a lower-resolution simulation layer in order to parameterize its motion in a layered fashion.

while the termdneor detail refer tomaster DOFs that parameter-

ize higher-resolution, detail layers. Fig.3 shows the two-level case of an MHMM while Figillus-

trates the relationship between embeddings, DOFs and relevant
Let us consider a set of material points, wihthe vector of all physical objects (such as quadrature points). The top row od#&ig.
their material coordinates, constant over time. As the state vector shows the relationship between the coarse DOFs (c) and a detail
of the objectq (containing the displacements of the master DOFs layer consisting of a local FEM simulation (d). All other objects



(a) Rest state (b) FEM deformation only (c) Frame-based deformation only (d) Combined deformations

Figure 3: Example of a two-level MHMM, using a frame-based coarse model (blue) and an FEM detail model (red). The detail displacements
Ja (3b) are applied in local frames debned by the deformation gradiEgtef the coarse displacement3d to generate the combined
deformations 3d).

are slave DOFS used for various purposes in the simulation algo-
rithm. Surface vertices (s) are used for display and collision detec-
tion, contact points (p) for contact resolution while embedded par-
ticles (e) and volume samples (v) are used for numerical integration
of relevant properties (i.e. mass and stiffness).

One potential problem with this approach is that combining em-
beddings using E4.may require intense computations at each time
step to update the coarse embedding based on the modibed ma-
terial coordinates, and may even introduce discontinuities when an
embedded point moves from one cell of a mesh-based coarse model
to another. To alleviate this problem, we express the detail motion
in a local frame associated with each embedded point. This is es-
sentially a brst-order expansion of Eq.

(a) Basic (b) Optimized

Figure 4: Structure of the two-level MHMM shown in Fay.

Ue = J JX)+ Fed , X 5
¢ (e, X) +Js(0s. X) ®) the mass matrix at a particular hiearchy level. Using the Jacobian
where F. is a block-diagonal matrix. ~For each embedded Of Eq6, the equivalent mass matrix at parent level would be:
point i, the diagonal block represents the deformation gradient # T $
. JC M eJc Jc M eJd

Fi = 'f(cl, + | of the coarse displacement at embedded point M=J"McJ= ITMode ITM ody )

i. This non-orthonormal basis represents the rotation and defor-

mation created by the coarse displacement, in which the detail dis-Fan et al. 013 observed that, while the diagonal blocks are
placement is applied, as illustrated by the example inFiblere, symmetric-positive-debnite (SPD), this mass matrix is generally
we assume that the coarse deformation beld is |Oca”y afDnEéi.e., Singu|ar’ due to the Off-diagona| Coup”ng blocks. This happens in

is uniform aroundX ), which is exact for some coarse models such the case of redundancies between the coarse and detail embeddings.
as triangular or tetrahedral Pnite elements. In the general case, thiseor instance, if the coarse beld is a rigid displacement and the detail
assumption is reasonable when detail displacements are small olis an FEM mesh, then a translation of the embedded object can be
when coarse deformations are smooth. In contrast, summing em-pptained using a translation of the frame as well as a uniform dis-
beddings requires small displacements of all models. Following placement of the FEM nodes. To alleviate the singularity, they use a

Eq2, the embedded velocity can be expressed as: least-squares approach to transfer bne scale Eulerian displacements
| B8 onto a coarse Lagrangian discretization. In contrast to this, we pro-
Ve=Jg= Jc Jg & (6) pose a more physically-based approach, using the mass matrix, as

explained in the next section.

where the Jacobianis a sparsie matri>? with only two non-nulliblocks 4.2 Kinetic Filtering

per embedded pointll = [% + %JJ], andJ} = Fé!;JTj]

for the coarse and detail models, respectively. However, it is easy We attempt to bnd the corresponding gene'ralized velocities at the
to see that straightforwardly combining arbitrary embeddings using coarse level &, that best matchre, the velocity at the embedded
this method is not physically correct. Bieely propagating a force level. This can be_ done by_ solv_lng a massl-welghted least squares
from the embedded layer to both the coarse and detail layers)(Eq. Problem, the solution of which yieldg, = M 'J¢ M eve, where
results in its duplication. Forces must be properly partitioned and M ¢ = Jc M eJc. Note that, if one takeM . to be a multiple of

then applied to each layer, ensuring that the total sum of work per- identity, this reduces to the classical pseudo inverse solution to a
formed on the object is consistent. system of equations. Now we can delfmethe embedded velocity

captured byg. as
Similar issues arise when dealing with other intrinsic object proper-

ties. Properties such as mass and stiffness are debned independently ve = Pve (8)
of the kinematic discretization either analytically or on a bne voxel P = JMLYUTM.. 9)
map. These properties are sampled using embedded particles, as il-

lustrated in Figda A given mass matriM . at the embedded level ~ We can also compute the remaining detail level velocity as

is not directly exploitable in NewtonOs law Ma , since the lat-

ter is only valid for independent DOFs, which requires us to modify ve = (1! P)ve (20)



surface layes, as well as the deformation energy integration sam-
ples (Gauss points in layef), are embedded in layer using in-
terpolation. Embedding deformation gradients in layeallows
us to implement all the standard strain measures (such as corota-
tional and Green-Lagrange), and associated constitutive laws (such
as Hookean or hyperelastic). The associated generalized forces are
stresses, which are propagated as forces to yehich also col-
lects the contact forces mapped frerthroughs. These forces are
Figure 5: Filtered detail motion. Left: rest shape. Middle, right:  split between coarse and detail forces as explained in Seti#on
detail deformations generated by external forces.

4.4 N-levels hierarchies

wherel is the identity matrix. This leads us to debne the comple- Kinetic bltering'can be_straightforwardly extended to handle more

mentary operatoP = | ! P which computes detail velocity (at ~ than two levels in the hierarchy. Lgt, Ji(t)(gi, X) andFi, 1 =

the embedded level) from the total velocity. It is straightforward I’i‘! L respectively the coordinates of the DOFs, the detail and the
c — H H . it 1

to see thape = M ePv ¢ yields an embedded momentum in the 5.5 frame at level. Each detail layer is applied in the parent

nullspace ofl; . Concretely, if the coarse layer is a rigid transform frame, so that for N levels, we get:

and the bne layer is a bnite element simulat®rstrips rigid mo-

tion out of the FEM velocity Peld while maintaining the non-rigid Ue = Ju+ fadz+gFiFada+ ...
motions. This avoids kinematic redundancy since rigid motions can _ N ki1 (14)
: = I+ (i Fi)dk
only be manifested at the coarse layer. !
In order to continue, we debne the Jacobian of our system as The corresponding Jacobian is:
| "
] " !
J= : Je Ing (11) J = Ji ... 'ﬂill\]i (15)
Iﬂoz I, |ﬂi = Iﬂi[ 1.(| ! Pi) (16)

and consequently the momentum computed by the off-diagonal o ) M 1T gT )
blocks of the generalized mass matrix for an arbitrary detail ve- Pi = PiadiMi 37 P MePia (17)
locity & is Mi = 3Pl McPi 1J; (18)

This formulation achieves decoupling since off-diagonal blocks of
JIMPIsd = JIpi=0. (12) the mass matrix are null (see proof in Appendix

Becausetf, was chosen arbitrarily, this is equivalent to the off-
diagonal mass matrix block,! M ¢BJ 4, being0. Note that this
does not occur when using the non-mass-weighted formulation of
Fan et al. 013 and that later, we will exploit this property to eval-
uate hierarchy levels in parallel.

5 Optimizing Performance

Constructing the kinetic Plter requires relating momenta of one
level of the hierarchy to the momenta of another. In thévweam-
plementation described above we do this by storing high resolution

The resulting form of NewtonOs equation is: information on the embedded particles in laye(the density of
# $# $ # $ which must be sufpcient to represent the deformation pbeld at the
JIM eJe ac . Jife most detailed layed, in the range of the detail deformation). Thus
JNBTMBIy as ~ JJPT e (13) the matrixP, used by the kinetic plter, is dense and is of dimen-
sion of the number of particles in the embedded layer. While
The upper-left block is SPD provided thdt. is symmetric and ¢ is never inverted, this may result in increased computation times

is not rank-debcient. While the lower-right block is singular due to due to the cost of performing dense matrix-matrix multiplication to

the Plter, it can be solved using a Filtered Conjugate Metiad | form the per-layer mass matrices (the size of these is strictly deter-
cher and Boxerman 2003 mined by the number of master DOFs in the particular layer). In

order to reduce the computation time without modifying the sam-
An example of tetrahedral FEM detail combined with a rigid coarse pling scheme, we present an optimization to bypass the embedded
motion is shown in Fid. The rigid frame is bxed for illustration  layer e completely, thus directly connectingands to the mas-
purposes, so that only detail deformations are shown. An externalter layerc-d. Each of the points in layers andv have their own
force applied to a single point creates deformations. The force is material coordinates and can thus be directly embeddedidto

lit by the t d Jacobi d the FEM model gets a f
Sp DY NS ransposed Lacovian, anc me moce” gets a OrceFor layerv, we compute deformation gradierits by spatially dif-

distribution which can only generate null linear and angular mo- ¢ ting th beddi ¢ ith h ol
menta. It can thus generate any displacement but a rigid one. Noticef€réntiating the embedding of Exwith respect to the material co-

that there is no bxed point in our detail model. Contrary to previ- ordinates of the sampling points:
ous approaches, the connection between the two models is made by
the Pltered Jacobian, not by attachment points. This allows us to
straightforwardly combine linear modal deformation modes as de-
tail on top of rigid motion, as shown in Sectigh4, to avoid the
computation of nonlinear deformation modes.

Fv = FcFq (19)

This corresponds to the composition of the coarse and detail defor-

mation gradients as shown in F3g.The stressef, are computed

using the deformation gradients and the local material constitutive

law, and integrated in space using standard cubature. Stresses could

4.3 Forces be directly mapped up as forces on layeamdd based on the trans-
posed Jacobian matrix (EB8). However, the question is how to blter

Our framework is compatible with all the usual material laws and the Jacobian of this embedding, to avoid Odouble countingO stresses

contact behaviors. In the simple approach illustrated id&idhe while converting them to forces at the master level.



LetJ. be the Jacobian of the embedding of deformation gradients nor fully implicit. The matrixS is used to implicitly account for
in the coarse model, anldy, be theunblteredJacobian in the detail the change in coupling force due to changes in the detail displace-
model, obtained by differentiation of B with respect to the co- ments. However, itignores changes in the kinetic Plterlandrhis
ordinates of the DOFs. We convert stresses to bltered forces in theis analogous to standard implementations of co-rotational FEM,
following way: which assume that the rotation matrix is bxed across time steps. In
practice weOve found this integration scheme to be stable for large
fa= JIP M [IMENIL, + BIGML 1IN IR (20) time steps. An example is shown in Sectibd wherein the rigid
dynamics are handled by a generic solver while the modal model
is handled using a specialized, preconditioned conjugate gradient

The above equation transforms the fofgefrom v to d using the solver described in the following sections.

following steps (right-to-left):

1. Transform forces fromw to ¢ andd usingJ{, andJ], 5.2 Pre-factored detail systems
2. Convert forces atl and ¢ to accelerations usinyl ;, * and
Mt In MHMMSs, detail motions are expressed in local frames relative
3. Sum contributions to the corresponding embedded accelera-to the coarse motiond{ in the right hand side of g6 transforms
tions usingd andJq bltered forces to the detail coordinate system, where the detail sys-
4. Compute the force at the embedded level udihg tem is solved). The nature of the detail motion is that it is high-
5. Split the force on the master layer using kinetic pbltering frequency, typically with lower amplitude - thus we can apply small

deformation simplipcations. By pre-factoring the lower right term

By re-arranging the above equation using&eve get: of the matrix of Eq26, supposing thal 4 is small enough, we can

fo= (11 PV 21 increase computational time, at the cost of accuracy. Examples of
c (! Wavfv (21) such systems are shown using linear FEM(Figufe and linear

p =M 4 JdM ePJ g . (22) modal simulations(Figur&0).

3= Jo Ja(! P) (23)

For non-interactive scenarios (e.g. animations for bIms) this pre-
factoring has no drawbacks. However, in applications wherein the

Note that now the dimension of our kinetic blter, are dictated by ~ User manipulates the mesh by applying an external force, the pref-
the number of DOFs in the detail level only, a signPgant reduction actorization prevents us from implicitly integrating this interaction

in size that yields a corresponding performance increase force. It is worth nothing that this limitation is common to most
) . ) methods that prefactor the implicit integration system matrix.
The square matrixl ! P ') acts as a Plter on the detail forces,

while its transpose acts as a blter on the detail velocities. Moreover,
since the above formulation holds for any other slave layers such as

s, it can be applied once to the force drand then accumulated .
bottom up, as illustrated usird) in Fig.4b. Our prefactored, per-layer, system matrices can also be used to ac-

celerate the solution of non-linear detail simulations by precondi-
tionning the detail solver using the initial prefactored system ma-
trix (see FigureB): Performance improvements of up%06% have
been observed in our experiments. This greatly reduces the cost of
adding extra detail tanysimulation.

5.3 Preconditioning Nonlinear Problems

5.1 Decoupled implicit integration

For implicit time integrators we can gain further performance im-
provements by modifying our kinetic blter so that it decouples hier-
archy levels during the implicit solve. This allows us to parallelize )
our velocity update steps on a per-layer basis. Consider the Implicit 9.4 Precomputation Cost
Euler method, which requires repeated solution of the following

equation: ' ( Our precomputation requires the assembly of projection matrices

M ! h®K ‘a=f + hKv (24) (involving the inversion of mass matrices as in standard direct

solvers, and a matrix multiplication of the size of the embedding

whereK = % is the stiffness matrix, andl is the time step. at most) and the proposed prefactorization (cholesky factorization

Given the mass matrik . at the embedded level, the mass ma- 0On a matrix of the layer size). Practically speaking, precomputation
trix at the master level is computed as explained in Seci@us- time is on the order of a few simulation timesteps at most.

ing the bltered Jacobian of Hd. We do not assemble the stiff-
ness matrix at the master level, since we use a Conjugate Gradien% Implementation Details
solver and propa@ations to compute the matrix-vector products. Let
H = M ! h%K ' be the integration matrix. The Pltering method
to cancel the off-diagonal blocks of the mass matrix presented in
Section4.2 can straightforwardly be extended to this matrix by re-
placing the projectiof® of Eq.8 with:

In this section we review some relevant implementation details as
well as expound upon important optimizations that can be applied
to MHMMs.

L1aT Atinitialization time, we Prst organize the model based on the prop-
v =Sv=JcH, Jc.Hev (25) i i i ;
, erty map of the object, as illustrated in Flg. Computing the mass
M ¢ at the embedded level and storing it as a constant in the mas-

Equation24 becomes: ter layer is a reasonable and efbcient approximation. Based on the
'ITHL, Ya ' aT(fo+hkey  stiffness distribution and the embedding, we compute the volume
¢ JTUT ST)H(! 8)3¢ as Il FsT )(fe + hK eV) samples of layev. We then set up the direct embeddings and re-

(26) move the embedded layeas explained in Sectidhand illustrated

This results in two systems coupled only through the right-hand in Fig.4b. Since gravity generates translational forces, its contribu-
term. These can be solved independently, possibly using special-tion to the detail is null when translation is kinematically feasible
ized solvers or in parallel. Our coupling is neither fully explicit by the coarse model. In this case, we apply it directly at the coarse



level. Otherwise, it is possible to split the weight across volume FEM (red edges on Fig:left), covering the entire object. Note that
sampling points. there is no attachment point between the rigid and the FEM models.

In general, the Jacobians change over time and must be updated
at each step of the simulation, and the blters as well. However,
many popular blendings such a linear FEM, linear modes, or afPne
frame-based blendings have constant Jacobians, and result in con-
stant! J¢/! qc or! J4/! gq matrices which allow us to save com-

putation time. ] o o
Figure 7: Rigid frame (blue) + global FEM (red). Left : initial

Assuming that the Pne displacement of the delkailis small, the position. Middle : simulated models shown separately. Right :
coarse Jacobian matri¢ and PltetP can be considered constant. Combined result. Grey objects are bxed colliders.

When the coarse displacement is large, the change of local frames_. . .
F. in Eq5 requires updates dfy. Figure8 shows an example of a local FEM volumetric patch hierar-

chically attached to a moving frame. This simple simulation, which
Lazy updates of Jacobians can lead to poor Pltering performancecould also be produced using traditional coupled models, shows
and this manifests as coarse motion bleeding into the detail layers.that our detail model can undergo large deformations. The detail
This is due to violating the constraint that off-diagonal blocks of the model is Pxed at its boundary with the rest of the object, to enforce
mass matrix should be zero. In practice we correct this using stan-the continuity of the displacements.
dard stabilization techniques. Such stabilization may be achieved
by bxing the edges of the detail model, which also ensures conti-
nuity in the displacement, at the interface of this model. With sta-
bilization in place the method is robust enough so that, in practice,
any linear solver like CG or MINRES will work for every scenario.

Pre-computing the blter once for the whole simulation does not lead
to visual artifacts (as can be seen in the accompanying video) while
recomputing the plter doubles the computation time of a given time
step.

7 Results

In this section, we exhibit the versatility of our approach using dif-

ferent combinations of deformation models (2d/3d Pnite elements,

rigid, frame-based, modal subspace) in conjunction with artist po- Figure 8: Rigid frame + local FEM: a baby bottle with a de-

sitioned secondary motion. formable soother. The detail level FEM is displayed with its local
coordinate system centered on the origin.

7.1 Physical Plausibility Even for a very stiff material, the weight is correctly simulated in
these two examples, because the kinetic blter maps it to the rigid

To show that our algorithm produces physically plausible results we model. This alleviates the well-known gravity artifact which occurs

compared it to a high-resolution FEM simulation of a beam under- when iterative solvers are used with stiff FEM. Incomplete solutions

going 3-point bending. Figur@shows both the FEM result and the  lead to stiff objects falling more slowly.

result of an MHMM composed of two coarse hexahedra, manually

overlaid with a bPne hexahedral grid. The relative displacement er- 7 3 FEM on frame-based deformation models

ror is less thar20% and visually the results are indistinguishable.

Our method allows an artist to add local secondary motion to any
type of coarse simulation or kinematic animation. In Fithe
coarse model of the octopus is frame-bas@ilgs et al. 201},
which allows for efbcient simulation of the global motion using
linear blend skinning. The artist then chooses to add a small, high-
resolution FEM patch to the octopusO head in order to capture the

Figure 6: Comparison on Rexion. Left: standard FEM. Right: deformation caused by its interaction with the hook.

MHMM with coarse FEM + detail Figure9 shows a similar example where the artist has added a cylin-
In the accompanying video, the simulation of a cantilever beam in der of high-resolution FEM to capture the pinching caused by the
contact shows a major advantage of MHMMs with regards to artist contacting string.

directed level-of-detail. By adding detail only in desired locations

(near the contact point) MHMMs keep the global motion of the

beam close to the input coarse motion. The bne FEM grid leads to

spurious secondary motion that alters the beams trajectory signib-

gantly. Note that all the beams reach identical Pnal conbgurations.

7.2 FEM on a rigid frame

An artist can choose to apply detail motion to a whole object, as
shown in Fig7. Here, a rigid model is enriched with tetrahedral



Figure 9: A string strangulates a deformable cylinder (purple). makes no assumption on the topology of the models, one can easily
A local tetrahedral FEM patch (red) allows a precise deformation 4qq 4 stiff skin to coarse soft tissue (Figd®

in the contact area while coarse afpne frames (blue) simulate the
global deformation.

. . . . . The coarse FE achieves volume preservation, while the bne surface
Allowing artists to easily had detail where its needed has the added ygates folds. The coupling achieved by the kinetic Plter generates

benept of reducing computational time as well as offering a corre- he well-known buckling behavior without additional constraints.
sponding reduction in memory footprint (Tatlg

7.4 Non-linear Modal Subspace

Non-linear subspace deformation can be easily and efpciently
achieved with our technique by combining a coarse frame-based
deformation beld and linear subspace deformation modes. These
modes can be drawn from simulation data, capture data or hand
crafted by an artist. The MHMM locally transforms each mode by
the blended displacement of the frames. The well known artifacts
due to linearity are reduced as the number of frames increases. This
is akin to a co-rotational simulation method wherein the rotation is
encoded by the frames rather than resulting from a polar decompo-

sition. Figure 12: A detailed thin shell embedded in a single coarse hexa-

Again we see that MHMMs allow for better control of animations. hedral element.

As shown in the accompanying video, the scripted displacement

of one of the frame can be automatically enriched with simulated |, Fig.13, we simulate the pinching of a patch of skin with hypo-
deformations (based on the remaining frames and modal degrees ofierm using the epiderm as 2D detail on top of a two-material coarse
freedom). volumetric grid.

To exhibit particular visual features, a third level can be added. In
Figure 10, local detailed deformations are achieved using a local
FEM patch. In Figll, we augment a global, linear modal model
using local subspace deformation modes which allows for Pne tun-
ing of the deformation degrees of freedom.

Figure 13: Skin folding simulation using a coarse volumetric FEM
mesh (in blue) combined with a thin shell patch and several mate-
rial properties.

7.6 Multilayer Editing of Animations

Figure 10: A 3-levels hierarchy combining frame-based, linear Here we show an example of multilayered animation editing, akin
modal subspace, and hexahedral bnite elements models. Leftto the layered approach used in many popular image editing suites.
Frame and FEM discretization; Middle: volume samples; Right: Our kinetic Plter helps ensure that adding new detail levels to a sim-
Simulation. ulation will have a limited effect on any underlying gross motion.
Figure 14 shows a 3 level hierarchy applied to an animated char-
acter. The coarse motion is prescribed by an artist using standard
skinning techniques. The artist has then added a coarse FEM grid
to capture the jiggling of the characterOs belly along with a bner,
local grid to add the indent caused by the characterOs bnger. Our
approach can emulate Rig-Space physktatn et al. 201Pusing
a hierarchy where the master layer is the rig that controls a bne
tetrahedral FEM model. However, we improve upon this technique
by allowing artists to add physical details without the need to mod-
ify the characfer rig itself. One could use a full high resolution
simulation such as in McAdams et a2(11], however using MH-
MMs requires far fewer degrees-of-freedom and allows for direct
augmentation of the skinned surface animation (rather than being
7.5 Multi-dimensional material limited to having the bone motion drive a soft elastic character).
All while permitting signibcantly more user control of deformation
MHMMs also provide a way for artists to modify the material com- placement. Not to mention that our technique is compatible with a
position of simulated object. For instance, because our approachwider range of material models.

Figure 11: Frame-based, global subspace and local subspace de-
formation models combined in a 3-level hierarchy.
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A Off-diagonal blocks for N-levels

In the expression of an upper off-diagonal blddk; , i < j , we
split Bj, 1:

Mij = J P MePj 1
o1 *
TPl MePiya(1! Py) (I pPye) Jj

k=i+1

The brst part of this formula is null, due to the properties of our
blters:

TPl MeBiy 1(1! Py)=
B MBI B MeB, 18, M T B MeP
# $%. &

M

=0

The property?;, 1P, 1 = Pj, 1 holds sincd?;, ; is a projection.



