
HAL Id: hal-01174303
https://inria.hal.science/hal-01174303

Submitted on 8 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How I Learned to Stop Worrying and Love NoSQL
Databases

Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, Riccardo Torlone

To cite this version:
Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, Riccardo Torlone. How I Learned to Stop Worrying
and Love NoSQL Databases. SEBD Italian Symposium on Advanced Database Systems, Jun 2015,
Gaeta, Italy. �hal-01174303�

https://inria.hal.science/hal-01174303
https://hal.archives-ouvertes.fr


How I Learned to Stop Worrying
and Love NoSQL Databases∗

Francesca Bugiotti1, Luca Cabibbo2, Paolo Atzeni2, and Riccardo Torlone2

1CentraleSuṕelec & INRIA & Université Paris-Sud and2Universit̀a Roma Tre

Abstract. The absence of a schema in NoSQL databases can disorient tradi-
tional database specialists and can make the design activity in this context a leap
of faith. However, we show in this paper that an effective design methodology
for NoSQL systems supporting the scalability, performance, and consistency of
next-generation Web applications can be indeed devised. The approachis based
on NoAM (NoSQL Abstract Model), a novel abstract data model for NoSQL
databases, which is used to specify a system-independent representation of the
application data. This intermediate representation can be then implemented in
target NoSQL databases, taking into account their specific features.

1 Motivation

A common myth on NoSQL databases is that they do not require database design, since
they are “schemaless.” You can put any data in a NoSQL database, in any way you
like, and then retrieve that data. While this is true in some cases (for example, to cache
session data in a web application), most often the data of interest for an application do
show some structure, which it may be useful to take advantageof.

To uphold the importance of NoSQL database design, we start by discussing an ex-
ample: an application for an on-line social game. This is a typical scenario in which the
use of a NoSQL database is suitable. The application should manage various types of
objects, including players, games, and rounds. A few representative objects are shown
in Fig. 1. (There, boxes and arrows denote objects and relationships between them,
respectively; please ignore, for now, colors and closed curves.)

Assume that we have chosen a key-value store as target NoSQL database. What
key-value pairs should we use? A distinct key-value pair foreach differentobject? A
distinct key-value pair for each differentattributeof an object? Or should we use each
key-value pair to represent agroup of related attributesof an objects? Or to represent a
group of related objects? In the latter cases, what are the grouping criteria?

In general, an application dataset can be represented in a NoSQL database in mul-
tiple, alternative ways. Thus decisions on the organization of data are required, in any
case. We now show that these decisions are significant, as they affect important appli-
cation qualities such as performance, scalability, and consistency.

Assume that, in the example above, we have chosen the following data representa-
tion: a key-value pair for each application object. Thus, we have a distinct key-value
pair for each player, game, and round, among others (Fig. 2).Then, consider the follow-
ing operations: (i) add a round to a game, and (ii) retrieve a game (with all its rounds).

∗This paper is a short version of [7]. Part of this work was performedwhile the first author
was with Universit̀a Roma Tre.



mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Fig. 1.Sample application objects

Assume also that the application should enforce a rule specifying that a round can be
added to a game only if some condition that involves the otherrounds of the game is
satisfied.

The proposed representation is unable to guarantee the atomicity of operation (i).
Most key-value stores can only support atomicity of operations involving a single key-
value pair, whereas operation (i) requires, in the proposedrepresentation, the access to
many key-value pairs, namely, a pair for the game and severalpairs for its rounds.

Furthermore, the proposed representation is inefficient with respect to operation (ii).
Indeed, the retrieval of a game with its rounds requires to “get” multiple key-value pairs,
which can be sharded over the various nodes managing the NoSQL datastore, and this
implementation is less efficient than the execution of a single “multi-get” access, which
is however possible only for key-value pairs localized on a single node.

Scalability is also affected negatively by this representation. Indeed, horizontal scal-
ability can be obtained only if each operation execution canbe managed by a single
node, whereas in the proposed data representation both operations (i) and (ii) require
accessing multiple key-value pairs residing on different shards.

key(/major/key/-/minor/key) value

Player/mary/-/ {username:”mary” , . . . ,games: [”Game:2345”, . . .]}
Player/rick/-/ {username:”rick” , . . . ,games: [”Game:2345”, . . .]}
Game/2345/-/ {id:”2345” , rounds: [”Round:2345:0” , ”Round:2345:1” , . . .]}
Round/2345/0/-/ . . .

Round/2345/1/-/ . . .

Fig. 2. A “key-value pair for each application object” database representation of the sample ob-
jects of Fig. 1 (abridged)

The above example shows that a “wrong” database representation can lead to the
inability to guarantee atomicity of important operations and to poor performance and
scalability. (We have performed several experiments demonstrating these facts.)

In the remainder of this paper we describe a general design methodology for No-
SQL databases aiming at identifying a “good” database representation with respect to
atomicity, performance, and scalability. This goal is pursued by referring to models
adopted in preliminary steps, which are motivated by the need to properly implement
the desired semantics of the application.



2 Overview
Let us consider, as a running example, an application for an on-line social game, intro-
duced in Sect. 1.

The methodology starts by building a conceptual representation of the data of inter-
est, as shown by the sample objects in Fig. 1. We assume, as it is often the case, that
this would be done in the interest of the quality of the application being developed.

The methodology proceeds by identifying aggregates. Eachaggregateis a group
of related application objects that should be accessed and/or manipulated together. This
activity is relevant to support scalability and consistency, as aggregates provide a natural
unit for sharding and atomic manipulation of data. In our example, natural aggregates
are players and games, as shown by closed curves in Fig. 1. Note that the rounds of
a game are nested within the game itself. In general, aggregates can be considered as
complex-value objects [1], as shown in Fig. 3.

Player:mary : 〈
username: ”mary” ,
firstName: ”Mary” ,
lastName: ”Wilson” ,
games: {

〈 game: Game:2345, opponent: Player:rick 〉,
〈 game: Game:2611, opponent: Player:ann 〉

}
〉

Game:2345: 〈
id : ”2345” ,
firstPlayer: Player:mary,
secondPlayer: Player:rick ,
rounds: {

〈 moves: . . ., comments: . . . 〉,
〈 moves: . . ., actions: . . ., spell: . . . 〉

}
〉

Fig. 3.Sample aggregates (as complex values)

The next activity consists in partitioning aggregates, if needed, into smaller elements
to better support the performance of certain operations. Consider for instance a player
that completes a round in a game she is playing. In order to update the underlying
database, there would be two alternatives: (i) the additionof the round just completed
to the aggregate representing the game; (ii) a complete rewrite of the whole game. The
former is clearly more efficient. It is therefore useful to decompose aggregates into
smaller data access units, according to the granularity of some important operations. In
our example, we model each round of a game as a separate data unit.

In the next step of the methodology, aggregates and their smaller data access units
are represented with NoAM, an abstract data model for NoSQL databases. This is a dis-
tinguishing feature of our approach: we use a data representation that refers to NoSQL
databases but it is still independent of the actual systems.Indeed, the NoAM model
defines abstractions of some major common features of NoSQL systems: (i) atomic
operations on units of data access and distribution (corresponding to records/rows in
extensible record stores, documents in document stores, and groups of key-value pairs
in key-value stores), and (ii) data access operations on portions of such units (columns
in extensible record stores, fields in document stores, and individual key-value pairs in
key-value stores). Accordingly, the NoAM abstract data model has (i)blocks, which are
units of data access and distribution, and (ii)entriesof blocks, each of which associates
a key with a (possibly complex) value. In this phase the aggregates and their smaller
data access units identified in the previous step are mapped into blocks and entries of
the NoAM abstract model. For example, a possible representation of the aggregates of
Fig. 1 in the NoAM data model is shown in Fig. 4, where outer boxes denote blocks



representing aggregates, while inner boxes show entries. As mentioned before, the same
data can be represented in different ways. To this end, we also propose design guidelines
to select a suitable data representation, by taking into account the data access patterns
of the application.

Player

mary

username”mary”

firstName”Mary”

lastName”Wilson”

games[0] 〈 game: Game:2345, opponent: Player:rick 〉

games[1] 〈 game: Game:2611, opponent: Player:ann 〉

Game

2345

id 2345

firstPlayer Player:mary

secondPlayerPlayer:rick

rounds[0] 〈 moves: ..., comments: ... 〉

rounds[1] 〈 moves: ..., actions: ..., spell : ... 〉

Fig. 4.A sample database in the abstract data model (abridged)

In the last step, the selected data representation in the NoAM abstract model is
implemented using the specific data structures of a NoSQL system. For example, if the
target system is a key-value store, then each entry is mappedto a distinct key-value pair,
while blocks correspond to groups of related key-value pairs. Figure 5 shows how the
abstract database of Fig. 4 can be mapped to Oracle NoSQL.

key(/major/key/-/minor/key) value

Player/mary/-/username ”mary”

Player/mary/-/firstName ”Mary”

Player/mary/-/lastName ”Wilson”

Player/mary/-/games[0] {game: ”Game:2345”, opponent: ”Player:rick” }

Player/mary/-/games[1] {game: ”Game:2611”, opponent: ”Player:ann” }

Game/2345/-/id 2345

Game/2345/-/firstPlayer ”Player:mary”
Game/2345/-/secondPlayer”Player:rick”
Game/2345/-/rounds[0] {moves: ..., comments: ...}

Game/2345/-/rounds[1] {moves: ..., actions: ..., spell: ...}

Fig. 5. Implementation in Oracle NoSQL for the sample database of Fig. 4 (abridged)

3 The NoAM Abstract Data Model
NoSQL database systems organize their data according to quite different data models.
They usually provide simple read-write data-access operations, which also differ from
system to system. Despite this heterogeneity, a few main categories of systems can
be identified [9, 22]: key-value stores, extensible record stores, document stores, plus
others that are beyond the scope of this paper.

NoAM (NoSQL Abstract Data Model) exploits the commonalities of such systems
and introduces abstractions to balance their differences and variations. It is defined as
follows.

– A NoAM databaseis a set ofcollections. Each collection has a distinct name.
– A collection is a set ofblocks. Each block in a collection is identified by ablock

key, which is unique within that collection.
– A block is a non-empty set ofentries. Each entry is a pair〈ek, ev〉, whereek is the

entry key(which is unique within its block) andev is its value (either complex or
scalar), called theentry value.



Figure 4 shows a sample NoAM database. In the figure, inner boxes show entries, while
outer boxes denote blocks. Collections are shown as groups of blocks.

In NoAM, a block is a construct that models a data access and distribution unit, a
concept available in all NoSQL systems. With reference to major NoSQL categories, a
block corresponds to: (i) a record/row, in extensible record stores; (ii) a document, in
document stores; or (iii) a group of related key-value pairs, in key-value stores. By “data
access unit” we mean amaximaldata unit that can be accessed and manipulated in an
atomic, efficient, and scalable way. Indeed, most NoSQL systems do not provide atomic
operations over multiple blocks (e.g., MongoDB [16] provides only atomic operations
over individual documents) and queries that need to access multiple blocks, such as
joins, can be quite inefficient. By “distribution unit” we mean that each unit is entirely
stored in a node of the cluster, whereas different units are distributed among the various
nodes.

In NoAM, an entry models the ability to access and manipulate just a component
of a block. It corresponds to: (i) an attribute, in extensible record stores; (ii) a field,
in document stores; or (iii) an individual key-value pair, in key-value stores. Note that
entry values can be complex.

Finally, a NoAMcollectiongroups data access units. For example, a table in exten-
sible record stores or a document collection in document stores.

4 Conceptual Modeling and Aggregate Design

As discussed in Sect. 2, our methodology starts, as it is usual in database design, by
building a conceptual representation of the data of interest. Following Domain-Driven
Design (DDD [11]), which is a popular object-oriented methodology, we assume that
the outcome of this activity is a conceptual UML class diagram, defining the entities,
value objects, and relationships of the application. Anentity is a persistent object that
has independent existence and is distinguished by a uniqueidentifier. A value objectis
a persistent object which is mainly characterized by its value, without an own identifier.

For example, our application should manage players, games,and rounds (Fig. 1).
Then the methodology proceeds by identifying aggregates [11]. Eachaggregateis

a “chunk” of related data, with a complex value and a unique identifier, intended to
represent a unit of data access and manipulation for an application. Aggregates are
also important to support scalability and consistency, as they provide a natural unit for
sharding and atomic manipulation of data in distributed environments [13, 11]. An im-
portant intuition in our approach is that each aggregate canbe conveniently mapped to
a NoAM block (Sect. 3), which is also a unit of data access and distribution. Aggre-
gates and blocks are however distinct concepts, since they belong, respectively, to the
application level and the database level.

Various approaches to aggregate design are possible. For example, in DDD [11],
entities and value objects are then grouped into aggregates. Eachaggregatehas an entity
as its root, and optionally it contains many value objects. Intuitively, an entity and a
group of value objects define an aggregate having a complex structure and value.

Aggregate design is mainly driven by data access operations. In our running exam-
ple, when a player connects to the application, all data on the player should be retrieved,
including an overview of the games she is currently playing.Then, the player can select



to continue a game, and data on the selected game should be retrieved. When a player
completes a round in a game she is playing, then the game should be updated. These
operations suggest that the candidate aggregate classes are players and games. Figure 1
also shows how application objects can be grouped in aggregates; there, a closed curve
denotes the boundary of an aggregate.

Aggregate design is also driven by consistency needs. Specifically, aggregates should
be designed as the units on which atomicity must be guaranteed [13] (with eventual
consistency for update operations spanning multiple aggregates [20]). Assume that the
application should enforce a rule specifying that a round can be added to a game only
if some condition that involves the other rounds of the game is satisfied. A game (com-
prising, as an aggregate, its rounds) can check the above condition, while an individual
round cannot. Therefore, a round cannot be an aggregate by itself.

Let us now illustrate the terminology we use to describe dataat the aggregate level.
An application datasetincludes a number ofaggregate classes, each having a distinct
name. The extent of anaggregate classis a set ofaggregate objects(or, simply,aggre-
gates). Each aggregate has acomplex value[1] and a uniqueidentifier. In conclusion,
our application has aggregate classesPlayerandGame.

5 Data Representation in NoAM and Aggregate Partitioning

In our approach, we use the NoAM data model as an intermediatemodel between appli-
cation datasets of aggregates and NoSQL databases. Specifically, an application dataset
can be represented by a NoAM database as follows. We represent each aggregate class
by means of a distinct collection, and each aggregate objectby means of a block. We
use the class name to name the collection, and the identifier of the aggregate as block
key. The complex value of each aggregate is represented by a set of entries in the cor-
responding block. For example, the application dataset of Fig. 1 can be represented by
the NoAM database shown in Fig. 4. The representation of aggregates as blocks is mo-
tivated by the fact that both concepts represent a unit of data access and distribution, but
at different abstraction levels. Indeed, NoSQL systems provide efficient, scalable, and
consistent (i.e., atomic) operations on blocks and, in turn, this representational choice
propagates such qualities to operations on aggregates.

In general, an application dataset can be represented by a NoAM database in several
ways. The various data representations for a dataset differin the choice of the entries
used to represent the complex value of each aggregate.

Specifically, in NoAM we represent each aggregate by means ofa partition of its
complex valuev, that is, a setE of entries that fully coverv, without redundancy. Each
entry represents a distinct portion of the complex valuev, characterized by a location
in its structure (specified by the entry key) and a value (the entry value).

Aggregate partitioning can be driven by the following guidelines (which are a vari-
ant of guidelines proposed in [6] in the context of logical database design):

– If an aggregate is small in size, or all or most of its data are accessed or modified
together, then it should be represented by a single entry.

– Conversely, an aggregate should be partitioned in multipleentries if it is large in
size and there are operations that frequently access or modify only specific portions
of the aggregate.



– Two or more data elements should belong to the same entry if they are frequently
accessed or modified together.

– Two or more data elements should belong to distinct entries if they are usually
accessed or modified separately.

The application of the above guidelines suggests a partitioning of aggregates, which
we will use to guide the representation in the target database. For example, the data rep-
resentation for games shown in Fig. 4 is motivated by the following operation: when
a player completes a round in a game she is playing, then the aggregate for the game
should be updated. In order to update the underlying database, there would be two al-
ternatives: (i) the addition of the round just completed to the aggregate representing the
game; (ii) a complete rewrite of the whole game. The former isclearly more efficient.
Therefore, each round is a candidate to be represented by an autonomous entry.

6 Implementation

In the last step, the selected data representation in NoAM isimplemented using the
specific data structures of a target datastore. For the sake of space, we discuss the im-
plementation only with respect to a single system: Oracle NoSQL. We have also imple-
mentations for other systems [7, 8].

Oracle NoSQL [18] is a key-value store, in which a database isa schemaless collec-
tion of key-value pairs, with a key-value index.Keysare structured; they are composed
of amajor keyand aminor key. The major key is a non-empty sequence of strings. The
minor key is a sequence of strings. On the other hand, eachvalue is an uninterpreted
binary string.

In Oracle NoSQL, the major key controls distribution (sharding is based on it) and
consistency (an operation involving multiple key-value pairs can be executed atomically
only if the various pairs are over a same major key).

A NoAM databaseD can be implemented in Oracle NoSQL as follows. We use a
key-value pair for each entry〈ek, ev〉 in D. The major key is composed of the collection
nameC and the block keyid, while the minor key is a proper coding of the entry key
ek. The value associated with this key is a representation of the entry valueev. The
value can be either simple or a serialization of a complex value, e.g., in JSON.

For example, Fig. 5 shows the implementation of the data representation of Fig. 4.
An implementation can be consideredeffectiveif aggregates are indeed turned into

units of data access and distribution. The effectiveness ofthis implementation is based
on how we use major keys and minor keys to control distribution and consistency.

7 Discussion

The NoAM methodology for the design of NoSQL databases relies on an aggregate-
oriented view of application data, an intermediate system-independent data model for
NoSQL datastores, and an implementation activity that takes into account the features
of specific systems. The overall approach aims at supportingthe typical requirements
of applications that can benefit from NoSQL technologies: scalability (selecting aggre-
gates as units of distribution), consistency (assuming that aggregates are also units of
atomic consistency), and performance (proposing different strategies for data represen-
tation according to data access operations).



We ran a number of experiments to compare the various data representation strate-
gies in situations of different application workloads and database sizes, and measured
the running time required by the workloads [7]. We also performed other experiments
on a data representation that does not conform to the design guidelines proposed in this
paper. The target system was Oracle NoSQL, a key-value store, deployed over Amazon
AWS on a cluster of four EC2 servers.

Overall, these experiments have confirmed that: (i) the design of NoSQL databases
should be done with care as it considerably affects the performance and consistency of
data access operations, and (ii) our methodology provides an effective tool for choosing
among different alternatives.

Currently, we are developing a tool that provides a common programming interface
towards different NoSQL systems, to access them in a unified way, in the spirit of
SOS [2]. The tool uses an internal representation based on NoAM, and it also supports
the design approach presented in this paper. We also plan to extend our methodology to
include data duplication to support query-based workloads.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. P. Atzeni, F. Bugiotti, and L. Rossi. Uniforma access to NoSQL systems. Inf. Syst., 43,

117–133, 2014.
3. P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, and R. Torlone. The relational model is

dead, SQL is dead, and I don’t feel so good myself.SIGMOD Record, 42(2):64–68, 2013.
4. A. Badia and D. Lemire. A call to arms: revisiting database design.SIGMOD Record,

40(3):61–69, 2011.
5. J. Baker et al. Megastore: Providing scalable, highly available storage for interactive services.

In CIDR 2011, pages 223–234, 2011.
6. C. Batini, S. Ceri, and S. B. Navathe.Conceptual Database Design: An Entity-Relationship

Approach. Benjamin/Cummings, 1992.
7. F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone. Database design for NoSQL systems. In

ER 2014, pages 223–231, 2014.
8. F. Bugiotti, L. Cabibbo, R. Torlone, and P. Atzeni. Database design for No-

SQL systems. Technical Report 210, Università Roma Tre, 2014. Available from
http://www.inf.uniroma3.it/?pageid=476.

9. R. Cattell. Scalable SQL and NoSQL data stores.SIGMOD Record, 39(4):12–27, 2010.
10. F. Chang et al. Bigtable: A distributed storage system for structured data. ACM Trans.

Comput. Syst., 26(2), 2008.
11. E. Evans.Domain-Driven Design. Addison-Wesley, 2003.
12. M. Hamrah. Data modeling at scale. 2011.
13. P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR 2007, pages

132–141, 2007.
14. I. Katsov. NoSQL data modeling techniques. 2012. Highly Scalable Blog.
15. C. Mohan. History repeats itself: sensible and NonsenSQL aspects of the NoSQL hoopla. In

EDBT, pages 11–16, 2013.
16. MongoDB Inc. MongoDB.http://www.mongodb.org. Accessed 2014.
17. T. Olier. Database design using key-value tables. 2006.
18. Oracle. Oracle NoSQL Database.http://www.oracle.com/technetwork/products/nosqldb.

Accessed 2014.
19. J. Patel. Cassandra data modeling best practices. 2012.
20. D. Pritchett. BASE: An ACID alternative.ACM Queue, 6(3):48–55, 2008.
21. A. Rathore. HBase: On designing schemas for column-oriented data-stores. 2009.
22. P. J. Sadalage and M. J. Fowler.NoSQL Distilled. Addison-Wesley, 2012.
23. M. Stonebraker. Stonebraker on NoSQL and enterprises.Comm. ACM, 54(8):10–11, 2011.


