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How | Learned to Stop Worrying
and Love NoSQL Databases

Francesca Bugiottj Luca Cabibbd, Paolo Atzerd, and Riccardo Torlorte
!CentraleSuplec & INRIA & Université Paris-Sud an@lUniversits Roma Tre

Abstract. The absence of a schema in NoSQL databases can disorient tradi-
tional database specialists and can make the design activity in this contegt a le
of faith. However, we show in this paper that an effective design meibgg

for NoSQL systems supporting the scalability, performance, and ¢ensisof
next-generation Web applications can be indeed devised. The appsdaased

on NoAM (NoSQL Abstract Model), a novel abstract data model foSRa
databases, which is used to specify a system-independent reptieseafahe
application data. This intermediate representation can be then implemented in
target NoSQL databases, taking into account their specific features.

1 Motivation

A common myth on NoSQL databases is that they do not requieddae design, since
they are “schemaless.” You can put any data in a NoSQL daalrmsny way you
like, and then retrieve that data. While this is true in sorsesdfor example, to cache
session data in a web application), most often the data efést for an application do
show some structure, which it may be useful to take advardage

To uphold the importance of NoSQL database design, we stalislbussing an ex-
ample: an application for an on-line social game. This igéchl scenario in which the
use of a NoSQL database is suitable. The application shoafthge various types of
objects, including players, games, and rounds. A few repitasive objects are shown
in Fig. 1. (There, boxes and arrows denote objects and oakttips between them,
respectively; please ignore, for now, colors and closedesuy

Assume that we have chosen a key-value store as target NoSt@basde. What
key-value pairs should we use? A distinct key-value pairefach differenbbjec? A
distinct key-value pair for each differeattribute of an object? Or should we use each
key-value pair to representggoup of related attributesf an objects? Or to represent a
group of related objectIn the latter cases, what are the grouping criteria?

In general, an application dataset can be represented irs@Nadatabase in mul-
tiple, alternative ways. Thus decisions on the organinatiodata are required, in any
case. We now show that these decisions are significant, patfeet important appli-
cation qualities such as performance, scalability, andistency.

Assume that, in the example above, we have chosen the folipgata representa-
tion: a key-value pair for each application objedthus, we have a distinct key-value
pair for each player, game, and round, among others (Figh&n, consider the follow-
ing operations: (i) add a round to a game, and (ii) retrievarag(with all its rounds).

*This paper is a short version of [7]. Part of this work was performvade the first author
was with Universia Roma Tre.
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games[1] mary : Player

: Gamelnfo }e— username = "mary"

Mary'
lastNames= "Wilson"

( rick : Player j : Gamelnfo
\ username = "rick" games(2]

firstName = "Ricky"

lastName= "Doe"
score =42 : Gamelnfo

\Lgames{ol games[1]

: Gamelnfo /

games{0]

firstPlayer  secondPlayer )/
)

moves[1]

Fig. 1. Sample application objects

Assume also that the application should enforce a rule fpegithat a round can be
added to a game only if some condition that involves the atbends of the game is
satisfied.

The proposed representation is unable to guarantee thec#toof operation (i).
Most key-value stores can only support atomicity of operatiinvolving a single key-
value pair, whereas operation (i) requires, in the propospresentation, the access to
many key-value pairs, namely, a pair for the game and sepai for its rounds.

Furthermore, the proposed representation is inefficietht iespect to operation (ii).
Indeed, the retrieval of a game with its rounds requires &™ultiple key-value pairs,
which can be sharded over the various nodes managing the INd&@store, and this
implementation is less efficient than the execution of alsifigulti-get” access, which
is however possible only for key-value pairs localized oimals node.

Scalability is also affected negatively by this represgaalndeed, horizontal scal-
ability can be obtained only if each operation execution lsarmanaged by a single
node, whereas in the proposed data representation bothatomer (i) and (ii) require
accessing multiple key-value pairs residing on differéwatrds.

key(/major/key/-/minor/key value

Player/mary/-/ {usernamémary”, ..., games['Game:2345”, ...]}
Player/rick/-/ {usernamérick” , ..., games['Game:2345”, ...]}
Game/2345/-/ {id:"2345" , rounds ["Round:2345:0", "Round:2345:1", ...]}

Round/2345/0/-/
Round/2345/1/-/

Fig. 2. A “key-value pair for each application object” database representatitresample ob-
jects of Fig. 1 (abridged)

The above example shows that a “wrong” database repregentan lead to the
inability to guarantee atomicity of important operatiomgldo poor performance and
scalability. (We have performed several experiments detnating these facts.)

In the remainder of this paper we describe a general designoaeogy for No-
SQL databases aiming at identifying a “good” database semtation with respect to
atomicity, performance, and scalability. This goal is ped by referring to models
adopted in preliminary steps, which are motivated by thalriegroperly implement
the desired semantics of the application.



2 Overview

Let us consider, as a running example, an application fomalime social game, intro-
duced in Sect. 1.

The methodology starts by building a conceptual represientaf the data of inter-
est, as shown by the sample objects in Fig. 1. We assume,sasften the case, that
this would be done in the interest of the quality of the aggilan being developed.

The methodology proceeds by identifying aggregates. Eadhmnegateis a group
of related application objects that should be accessedamd@nipulated together. This
activity is relevant to support scalability and consisteias aggregates provide a natural
unit for sharding and atomic manipulation of data. In ourregke, natural aggregates
are players and games, as shown by closed curves in Fig. &.thNat the rounds of
a game are nested within the game itself. In general, agggegan be considered as
complex-value objects [1], as shown in Fig. 3.

Player:mary : ( Game:2345: (
username "mary” , id : "2345"
firstName: "Mary” , firstPlayer: Player:mary,
lastName "Wilson” , secondPlayer Player:rick,
games { rounds: {
( game: Game:2345 opponent Player:rick ), (moves ...,comments... ),
( game: Game:2611 opponent Player:ann ) (moves ..., actions: ..., spell:...)
} }

) )
Fig. 3. Sample aggregates (as complex values)

The next activity consists in partitioning aggregateseiéded, into smaller elements
to better support the performance of certain operationasier for instance a player
that completes a round in a game she is playing. In order tatepthe underlying
database, there would be two alternatives: (i) the addafaihe round just completed
to the aggregate representing the game; (ii) a completeatecofrthe whole game. The
former is clearly more efficient. It is therefore useful tocdmpose aggregates into
smaller data access units, according to the granularitproesimportant operations. In
our example, we model each round of a game as a separate data un

In the next step of the methodology, aggregates and theilteandata access units
are represented with NoAM, an abstract data model for NoS@aldhses. This is a dis-
tinguishing feature of our approach: we use a data reprasemthat refers to NoSQL
databases but it is still independent of the actual systémiged, the NoAM model
defines abstractions of some major common features of No§®erss: (i) atomic
operations on units of data access and distribution (cooreting to records/rows in
extensible record stores, documents in document stordsgyranps of key-value pairs
in key-value stores), and (ii) data access operations diopsrof such units (columns
in extensible record stores, fields in document stores, mfididual key-value pairs in
key-value stores). Accordingly, the NoAM abstract data elda@s (i)blocks which are
units of data access and distribution, anddijriesof blocks, each of which associates
a key with a (possibly complex) value. In this phase the aggjes and their smaller
data access units identified in the previous step are mappedbliocks and entries of
the NoAM abstract model. For example, a possible repregentaf the aggregates of
Fig. 1 in the NoAM data model is shown in Fig. 4, where outerdsodenote blocks



representing aggregates, while inner boxes show entrgesiehtioned before, the same
data can be represented in different ways. To this end, vegatpose design guidelines
to select a suitable data representation, by taking intowattcdhe data access patterns

of the application.

Player Game
[usernamé’mary” | [id [2345 |
[firstNamd"Mary” | [firstPlayer [Player:mary |
mary [lastNamg"Wilson” || |2345[secondPlayéiPlayer:rick |
[games[0] ( game: Game:2345 opponent Player:rick )] [rounds[0]  [({'moves .., comments ...} |
[games[1] ( game: Game:2611 opponent Player:ann) | [rounds[1]  [({moves .., actions: ..., spell: ...} |

Fig. 4. A sample database in the abstract data model (abridged)

In the last step, the selected data representation in theMNaldstract model is
implemented using the specific data structures of a NoSQiesys-or example, if the
target system is a key-value store, then each entry is mapyzedistinct key-value pair,
while blocks correspond to groups of related key-valuespdirgure 5 shows how the
abstract database of Fig. 4 can be mapped to Oracle NoSQL.

key(/major/key/-/minor/keyvalue

Player/mary/-/username "mary”

Player/mary/-/firstName "Mary”

Player/mary/-/lastName "Wilson”

Player/mary/-/games[0]  {game "Game:2345", opponent”Player:rick” }
Player/mary/-/games[1]  {game "Game:2611", opponent”Player:ann” }
Game/2345/-/id 2345

Game/2345/-/firstPlayer  "Player:mary”
Game/2345/-/secondPlayeiPlayer:rick”

Game/2345/-/rounds[0] ~ {moves..., comments...}
Game/2345/-/rounds[1]  {moves..., actions ..., spelt ...}

Fig. 5. Implementation in Oracle NoSQL for the sample database of Fig. 4 (albidge

3 The NoAM Abstract Data Model

NoSQL database systems organize their data according t® djfferent data models.
They usually provide simple read-write data-access ojpastwhich also differ from
system to system. Despite this heterogeneity, a few maggoaes of systems can
be identified [9, 22]: key-value stores, extensible recaotes, document stores, plus
others that are beyond the scope of this paper.

NoAM (NoSQL Abstract Data Modeéxploits the commonalities of such systems
and introduces abstractions to balance their differenodsvariations. It is defined as
follows.

— A NoAM databases a set ofcollections Each collection has a distinct name.

— A collection is a set oblocks Each block in a collection is identified bykdock
key, which is unique within that collection.

— Ablock is a non-empty set @ntries Each entry is a paifek, ev), whereek is the
entry key(which is unique within its block) andv is its value (either complex or
scalar), called thentry value



Figure 4 shows a sample NoAM database. In the figure, innexssttow entries, while
outer boxes denote blocks. Collections are shown as grdupeaks.

In NoAM, a blockis a construct that models a data access and distributiadnauni
concept available in all NoSQL systems. With reference tpmdoSQL categories, a
block corresponds to: (i) a record/row, in extensible rdcsiores; (ii) a document, in
document stores; or (iii) a group of related key-value pairkey-value stores. By “data
access unit” we meanrmaaximaldata unit that can be accessed and manipulated in an
atomic, efficient, and scalable way. Indeed, most NoSQLlesystdo not provide atomic
operations over multiple blocks (e.g., MongoDB [16] pra@sdnly atomic operations
over individual documents) and queries that need to accediipta blocks, such as
joins, can be quite inefficient. By “distribution unit” we e that each unit is entirely
stored in a node of the cluster, whereas different units istaltited among the various
nodes.

In NoAM, an entry models the ability to access and manipulate just a component
of a block. It corresponds to: (i) an attribute, in extensit®cord stores; (ii) a field,
in document stores; or (iii) an individual key-value pair,key-value stores. Note that
entry values can be complex.

Finally, a NoAM collectiongroups data access units. For example, a table in exten-
sible record stores or a document collection in documemésto

4 Conceptual Modeling and Aggregate Design

As discussed in Sect. 2, our methodology starts, as it isl usutatabase design, by
building a conceptual representation of the data of inteFeslowing Domain-Driven

Design (DDD [11]), which is a popular object-oriented metblmgy, we assume that
the outcome of this activity is a conceptual UML class diagrdefining the entities,
value objects, and relationships of the application.eftity is a persistent object that
has independent existence and is distinguished by a urdeuéfier. A value objecis

a persistent object which is mainly characterized by its@alvithout an own identifier.

For example, our application should manage players, gaames,ounds (Fig. 1).

Then the methodology proceeds by identifying aggregatels Hachaggregates
a “chunk” of related data, with a complex value and a uniqueniifier, intended to
represent a unit of data access and manipulation for ancappin. Aggregates are
also important to support scalability and consistencyheag provide a natural unit for
sharding and atomic manipulation of data in distributedremments [13, 11]. An im-
portant intuition in our approach is that each aggregatebeaconveniently mapped to
a NoAM block (Sect. 3), which is also a unit of data access dstfilbution. Aggre-
gates and blocks are however distinct concepts, since tleydp, respectively, to the
application level and the database level.

Various approaches to aggregate design are possible. orpdx, in DDD [11],
entities and value objects are then grouped into aggredzdebaggregatenas an entity
as its root, and optionally it contains many value objeatsuitively, an entity and a
group of value objects define an aggregate having a compiestgte and value.

Aggregate design is mainly driven by data access operatiomair running exam-
ple, when a player connects to the application, all data eplyer should be retrieved,
including an overview of the games she is currently playirigen, the player can select



to continue a game, and data on the selected game shouldieeaét When a player
completes a round in a game she is playing, then the gamedsheulpdated. These
operations suggest that the candidate aggregate classgisgers and games. Figure 1
also shows how application objects can be grouped in agg®gaere, a closed curve
denotes the boundary of an aggregate.

Aggregate design is also driven by consistency needs. fRjadlgi, aggregates should
be designed as the units on which atomicity must be guardrjie (with eventual
consistency for update operations spanning multiple agdges [20]). Assume that the
application should enforce a rule specifying that a roundlmaadded to a game only
if some condition that involves the other rounds of the gasreatisfied. A game (com-
prising, as an aggregate, its rounds) can check the abowgioon while an individual
round cannot. Therefore, a round cannot be an aggregatedify it

Let us now illustrate the terminology we use to describe dathe aggregate level.
An application dataseincludes a number adggregate classegach having a distinct
name. The extent of asmggregate clasg a set ofaggregate objectéor, simply,aggre-
gates. Each aggregate hascamplex valugl] and a uniquedentifier. In conclusion,
our application has aggregate clasBés/erandGame

5 Data Representation in NOAM and Aggregate Partitioning

In our approach, we use the NOAM data model as an intermeiiagiel between appli-
cation datasets of aggregates and NoSQL databases. Sbgciéin application dataset
can be represented by a NoAM database as follows. We represemaggregate class
by means of a distinct collection, and each aggregate objenteans of a block. We
use the class name to name the collection, and the identiftee@ggregate as block
key. The complex value of each aggregate is represented d&tycd entries in the cor-
responding block. For example, the application datasetgflFcan be represented by
the NoAM database shown in Fig. 4. The representation ofeagges as blocks is mo-
tivated by the fact that both concepts represent a unit ef @etess and distribution, but
at different abstraction levels. Indeed, NoSQL systemsigeoefficient, scalable, and
consistent (i.e., atomic) operations on blocks and, in,ttitis representational choice
propagates such qualities to operations on aggregates.

In general, an application dataset can be represented bjkiMatabase in several
ways. The various data representations for a dataset difftae choice of the entries
used to represent the complex value of each aggregate.

Specifically, in NOAM we represent each aggregate by measpaftition of its
complex valuey, that is, a seF of entries that fully coven, without redundancy. Each
entry represents a distinct portion of the complex valueharacterized by a location
in its structure (specified by the entry key) and a value (titeyevalue).

Aggregate partitioning can be driven by the following guiides (which are a vari-
ant of guidelines proposed in [6] in the context of logicaladese design):

— If an aggregate is small in size, or all or most of its data aessed or modified
together, then it should be represented by a single entry.

— Conversely, an aggregate should be partitioned in mul8pleies if it is large in
size and there are operations that frequently access ofyrady specific portions
of the aggregate.



— Two or more data elements should belong to the same entrgyfdte frequently
accessed or modified together.

— Two or more data elements should belong to distinct entfiglsely are usually
accessed or modified separately.

The application of the above guidelines suggests a patititipof aggregates, which
we will use to guide the representation in the target databas example, the data rep-
resentation for games shown in Fig. 4 is motivated by thedhg operation: when
a player completes a round in a game she is playing, then tiregate for the game
should be updated. In order to update the underlying dataltasre would be two al-
ternatives: (i) the addition of the round just completechi® aggregate representing the
game; (ii) a complete rewrite of the whole game. The formetearly more efficient.
Therefore, each round is a candidate to be represented hyt@moanous entry.

6 Implementation

In the last step, the selected data representation in NoANhpgemented using the
specific data structures of a target datastore. For the Sa@aoe, we discuss the im-
plementation only with respect to a single system: Oracl8Qlo. We have also imple-
mentations for other systems [7, 8].

Oracle NoSQL [18] is a key-value store, in which a databaaesishemaless collec-
tion of key-value pairs, with a key-value indégeysare structured; they are composed
of amajor keyand aminor key The major key is a non-empty sequence of strings. The
minor key is a sequence of strings. On the other hand, ealtieis an uninterpreted
binary string.

In Oracle NoSQL, the major key controls distribution (shiagds based on it) and
consistency (an operation involving multiple key-valuggaan be executed atomically
only if the various pairs are over a same major key).

A NoAM databaseD can be implemented in Oracle NoSQL as follows. We use a
key-value pair for each entrgk, ev) in D. The major key is composed of the collection
nameC and the block keyd, while the minor key is a proper coding of the entry key
ek. The value associated with this key is a representationektitry valuecv. The
value can be either simple or a serialization of a compledejat.g., in JISON.

For example, Fig. 5 shows the implementation of the datassmtation of Fig. 4.

An implementation can be considerefflectiveif aggregates are indeed turned into
units of data access and distribution. The effectivenessi®implementation is based
on how we use major keys and minor keys to control distrilbuéind consistency.

7 Discussion

The NoAM methodology for the design of NoSQL databasessalie an aggregate-
oriented view of application data, an intermediate sysietependent data model for
NoSQL datastores, and an implementation activity thatddh® account the features
of specific systems. The overall approach aims at suppatti@dypical requirements
of applications that can benefit from NoSQL technologiealadility (selecting aggre-
gates as units of distribution), consistency (assumingdbgregates are also units of
atomic consistency), and performance (proposing diftestrategies for data represen-
tation according to data access operations).



We ran a number of experiments to compare the various datesemation strate-
gies in situations of different application workloads aradadbase sizes, and measured
the running time required by the workloads [7]. We also penfed other experiments
on a data representation that does not conform to the desidalimes proposed in this
paper. The target system was Oracle NoSQL, a key-value, steptoyed over Amazon
AWS on a cluster of four EC2 servers.

Overall, these experiments have confirmed that: (i) thegtlesi NoSQL databases
should be done with care as it considerably affects the paence and consistency of
data access operations, and (ii) our methodology providegfective tool for choosing
among different alternatives.

Currently, we are developing a tool that provides a commogamming interface
towards different NoSQL systems, to access them in a unifiagl w the spirit of
SOS [2]. The tool uses an internal representation based évi\land it also supports
the design approach presented in this paper. We also plateioccour methodology to
include data duplication to support query-based workloads
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