
�>���G �A�/�, �?���H�@�y�R�R�d�3�y�8�R

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�R�d�3�y�8�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�d �C�m�H �k�y�R�8

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�*�Q�T�v�`�B�;�?�i

�*���a�h�, �1�z�2�+�i�B�p�2 ���M�/ �1�{�+�B�2�M�i �l�b�2�` �A�M�i�2�`���+�i�B�Q�M �7�Q�`
�*�Q�M�i�2�t�i�@���r���`�2 �a�2�H�2�+�i�B�Q�M �B�M �j�. �S���`�i�B�+�H�2 �*�H�Q�m�/�b

�G�B�M�;�v�m�M �u�m�- �E�Q�M�b�i���M�i�B�M�Q�b �1�7�b�i���i�?�B�Q�m�- �S�2�i�`�� �A�b�2�M�#�2�`�;�- �h�Q�#�B���b �A�b�2�M�#�2�`�;

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�G�B�M�;�v�m�M �u�m�- �E�Q�M�b�i���M�i�B�M�Q�b �1�7�b�i���i�?�B�Q�m�- �S�2�i�`�� �A�b�2�M�#�2�`�;�- �h�Q�#�B���b �A�b�2�M�#�2�`�;�X �*���a�h�, �1�z�2�+�i�B�p�2 ���M�/ �1�{�@
�+�B�2�M�i �l�b�2�` �A�M�i�2�`���+�i�B�Q�M �7�Q�` �*�Q�M�i�2�t�i�@���r���`�2 �a�2�H�2�+�i�B�Q�M �B�M �j�. �S���`�i�B�+�H�2 �*�H�Q�m�/�b�X �A�1�1�1 �h�`���M�b���+�i�B�Q�M�b �Q�M
�o�B�b�m���H�B�x���i�B�Q�M ���M�/ �*�Q�K�T�m�i�2�` �:�`���T�?�B�+�b�- �A�M�b�i�B�i�m�i�2 �Q�7 �1�H�2�+�i�`�B�+���H ���M�/ �1�H�2�+�i�`�Q�M�B�+�b �1�M�;�B�M�2�2�`�b�- �k�y�R�e�- �k�k �U�R�V�-
�T�T�X�3�3�e�@�3�N�8�X �I�R�y�X�R�R�y�N�f�h�o�*�:�X�k�y�R�8�X�k�9�e�d�k�y�k�=�X �I�?���H�@�y�R�R�d�3�y�8�R�=

https://hal.inria.fr/hal-01178051
https://hal.archives-ouvertes.fr


CAST: Effective and Ef�cient User Interaction
for Context-Aware Selection in 3D Particle Clouds
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Fig. 1. (a) SpaceCast selects particle clusters by enclosing them with a lasso, based on the lasso shape; (b) TraceCast does not require
an accurate lasso; and (c) with PointCast users can select tiny clusters from a noisy environment with only a single click or touch.

Abstract —We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle
datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive
target selection has been particularly challenging when the data subsets of interest were implicitly de�ned in the form of complicated
structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial
selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural
input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be �ne-tuned
after the selection interaction has been completed. Together, they provide an effective and ef�cient tool set for the fast exploratory
analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only
to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always
faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were
strongly favored by our participants for intuitiveness and ef�ciency.

Index Terms —Selection, spatial selection, structure-aware selection, context-aware selection, exploratory data visualization and
analysis, 3D interaction, user interaction

1 INTRODUCTION

Exploratory data visualization and analysis [48] is a fundamental pillar
of many visualization systems. It provides domain experts with tools to
study unknown datasets, an activity during which the data is examined
more closely to discover interesting or unexpected patterns. One essen-
tial tool for exploratory visualization is the ability to select different
subsets of the dataset [53], based on the current state of the exploration
and/or one's own intuitions. Selection is relatively easy for 2D datasets
by means of picking, lasso-selection, or brushing. Three-dimensional
datasets such as particle simulations, however, pose the much harder
challenge of needing to specify one or more 3D volumes that enclose
the intended subset of the data. Most existing selection mechanisms for
3D data [3] provide means to pick or ray-point at objects, but these fail
if no explicit 3D shapes to pick exist—as it is the case for particle data.

Recently, a number of structure-aware selection techniques [39,
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43, 56] were proposed that promise to deduce a person's selection
intention based on simple input, the characteristics of the dataset, and
the current viewing conditions. All these techniques use a 2D lasso
drawn on the projection of the 3D dataset and then derive a selection
volume, typically by analyzing the particle density [43, 56] or the
scalar properties of volume data [39]. While these approaches present
a considerable improvement to a cylinder-based lasso selection in 3D
space, all of them require the users of a visualization system to �rst �nd
a good view for the selection interaction—a task that is often dif�cult or
impossible in realistic scenarios with complex datasets. Moreover, the
existing structure-aware approaches do not take the location or shape
of the drawn lasso into account when determining which part of the
enclosed data space may represent the intended selection region.

In order to address these issues, we present SpaceCast, TraceCast,
and PointCast, a family of new interactive context-aware selection
techniques (CAST) (see Fig. 1). SpaceCast (Fig. 1(a)) analyzes the
parts of the clusters that project inside the 2D lasso, selecting only the
part that has the best overlap with the input lasso. TraceCast (Fig. 1(b))
is inspired by stroke recognition techniques, such as those used for
the input of Chinese characters. In contrast to SpaceCast, TraceCast
does not use the lasso metaphor but interprets the path of the drawn
selection stroke, selecting that candidate cluster whose 2D projection is
best approximated by the drawn stroke. In particular, TraceCast does
not restrict selection to within the drawn stroke. Both SpaceCast and
TraceCast are useful to select clearly de�ned particle clusters, even if
they are occluded (partially, or even completely) by others. PointCast
(Fig. 1(c)), �nally, uses the picking/ray pointing metaphor known from



traditional 3D selection. It evaluates potential candidate clusters along
the line of sight, selecting the �rst one that matches a density threshold
determined based on the densities along the ray. These three techniques
thus suit a variety of different selection needs and, together, they form
a powerful selection toolkit for analyzing particle datasets.

After a discussion of related work in Section 2, we introduce the
three context-aware selection techniques in detail in Section 3. We
then present the results of a controlled user study in Section 4 in which
we evaluated the performance of the Cast selection techniques and
compared them to the state-of-the-art selection methods. In Section 5
we then critically re�ect on these results and what they mean for realistic
application scenarios, show and assess a number of examples taken
from scienti�c domains, and discuss limitations and future work, before
concluding the paper in Section 6.

2 RELATED WORK

Selection is a fundamental component of virtually all interactive visu-
alization systems, “as ubiquitous as selecting icons in a desktop GUI”
[53] and many variants exist as Wills [53] shows with his taxonomy
of selection techniques. For the speci�c case of 3D representations or
scenes, numerous methods have been created to select items and shapes
[3, 7]. For example, many approaches for selection by means of 3D
raycasting have been created (e. g., [2, 34, 37, 40, 54]). Also special
techniques, for example, for 3D streamline selection (e. g., [28, 31, 58])
and selection in different data spaces (e. g., [24]) have been created.
In our work, however, we are less interested in distinct objects be-
cause, in the case of particle datasets, the single object (i. e., particle)
typically has no meaning and 3D pointing techniques [3] would not
be appropriate to select single particles—instead, groups of particles
or particle clusters are important for a further analysis. This means
we need selection techniques based on aspatial speci�cationof a 3D
sub-space that contains the elements to be further explored, with the
challenge that this sub-space does not explicitly exist in the data.

Initial approaches for spatial selections used simple shape primitives
that were easy to manipulate in 3D space such as cones [35, 46]. Haan et
al.'s [13] IntenSelect extended this concept for the selection of moving
targets by combining it with a constantly updated scoring function.
Particularly related to our work is Lucas and Bowman's [37] Tablet
Freehand Lasso which also uses cone-based selection volumes but lets
users draw them on a 2D projection of the data, which inspired our own
interaction design. Of course, due to their reliance on simple selection
shapes such as cones or cylinders, generic spatial techniques will be
imprecise by default. Progressive/iterative re�nement strategies thus
facilitate the speci�cation of better selections, such as demonstrated
by Bacim et al. [4], Elmqvist et al. [19], and Kopper et al. [33]. We
can make use of similar progressive re�nement strategies by means of
Boolean operations based on the selected subspaces [53].

Another form of deriving spatial selections is to use dedicated user
interaction strategies. Straight-forward techniques use some sort of
dedicated 3D input device (e. g., 3D mice, optical 3D tracking, LEAP
motion, etc.) and also simple selection primitives. For example, Ulinski
et al. [49] and Cabral et al. [10] position a cube resp. a sphere with
two-handed input, while Bacim et al. [5] use the concept of half spaces
controlled through 3D gestural input. Similarly, Ren et al. [41] and
Burgess et al. [9] use freehand gestures to control the selection. Dedi-
cated techniques exist also for true volumetric devices [23] and special
input surfaces [6]. Benko and Feiner [8], in contrast, used touch input
to cleverly position a selection sphere in space. This interaction design
uses a planar 2D surface as input, similar to our own approach.

However, even such dedicated interaction designs typically require
dedicated hardware and/or many steps to achieve an effective selection
in complicated datasets such as the simulation of galaxies (e. g., [44,
45]). Therefore, structure-aware or context-aware selection techniques
have been devised that are able to deduce a user's selection intention
based on the underlying data and view conditions and obtain a suitable
or, at least, approximate selection in the �rst place. For two-dimen-
sional problems, for example, the perceptual grouping of objects was
successfully used for structure-aware selection [14, 15]. In three-dimen-
sional space, however, the situation is more complicated. Not only do

we face another spatial dimension, but we also are typically limited to
providing input in a 2D space (such as through mouse movements, pen
input, or touch input). Unless one is only interested in a single location
(e. g., voxel) [51] or surface patch [47] determined (i. e., picked) in a
context-aware fashion, this task therefore requires the more dif�cult
speci�cation of a suitable 3D enclosing volume.

Owada et al.'s [39] Volume Catcher, for example, solves this problem
for unsegmented volume data by asking users to draw 2D strokes
along the perceived borders of features for unsegmented volume data,
and then deduces an appropriate segmentation of the dataset, i. e., a
selection. In an approach designed for line data, Akers' [1] CINCH
provides a marking interface for structure-aware 3D neurologic pathway
selection. Yu et al.'s [56] TeddySelection and CloudLasso allow users
to enclose spatial regions with a lasso drawn on the 2D projection
and derive an appropriate selection subspace for particle data. They
demonstrate, in particular, that their CloudLasso is able to handle
complex scenarios in less time than a simple cylinder-based selection.
Shan et al. [43] then discuss an extension to CloudLasso, in that they
analyze the different clusters that are generated by the CloudLasso
technique and only select the one with the largest 2D projection.

These context/structure-aware selections thus all specify what is
interesting by deriving a sub-space, doing that in a manner that depends
on the data, the view, and other parameters [38]. While Wills [53]
derives his taxonomy of selection techniques for visual encodings
of abstract data on the 2D plane, his distinctions of selections with
respect tospace differentiationand data dependencyalso apply to
our three-dimensional datasets as he also discusses selection as a way
to spatially specify what to investigate further. The Cast family of
selection techniques that we discuss in this paper are, hence,data-de-
pendent toolsthat provide intuitive means to specify selection through
a lasso, through a drawn stroke, or through a speci�ed point. We
thus address the challenges of the existing structure-aware selection
techniques [39, 43, 56] which are only able to make global decisions
for the entire dataset (or the lasso-enclosed part), while SpaceCast,
TraceCast, and PointCast derive criteria for more local, precise, and
intuitive selections by the shape and location of the drawn primitive.

3 DESCRIPTION OF THE SELECTION TECHNIQUES

To achieve these goals, the Cast family members have to derive the
selection intention of the user from the type and shape of the provided
input—in a way that goes beyond a simple two-dimensional cut-off
mask as done by previous structure-aware approaches [43, 56]. We
thus employ three dedicated heuristics that use different ways for in-
teractively constraining the selection volume. These heuristics do not
directly use the particle positions but rather a continuous density �eld
r (r ) that represents the particle density at a pointr in space.1 We �rst
compute the density �eld at the nodesr (n) of a regular 3D-grid that
covers the dataset. We then derive the valuer (r ) of the density �eld at
any other pointr in space through linear interpolation from the values
of r at the grid nodes closest tor . For completeness, we brie�y review
the computation of the density �eldr later in Sect. 3.4.

3.1 SpaceCast

Compared to the previous techniques such as CloudLasso, an obvious
intention may be to constrain the selection such that only those clusters
are selected that are similar in their (projected) shape as the drawn lasso.
For this purpose we provide SpaceCast as the �rst method in the Cast
family. SpaceCast's user interaction and initial form of computation
thus resembles that of CloudLasso: the user also draws a lassoL around
the particles to be selected. If the user-drawn input stroke is not closed
we convert it into a closed stroke by connecting its start and end points.
If the input stroke self-intersects we only consider its largest closed
part, starting and ending at the intersection. The lassoL thus de�nes a
frustumF, i. e., a 3D-volume that projects to the screen insideL. We

1This aspect also makes it possible to apply the techniques to volumetric
data which samples a chosen scalar �eld. This scalar �eld does not have to be a
density, but any visually salient aspect of the data when visualized.



(a) (b)

Fig. 2. (a) Small cluster in front of a larger one in SpaceCast. (b) Overlap
measure mA in TraceCast. The center area represents the common
area SA \ SL that increases the measure while the two peripheral lobes
represent the symmetric difference SA 4 SL that decreases the measure.

then restrict all subsequent operations to operate insideF. We compute
an approximate average densityr F insideF as

r F =
1

NF

NF

å
n= 1

r (r (n));

where the sum runs over the set of grid-nodesr (n) insideF andNF is
the number of such nodes. We then choose the initial density threshold
as r 0 = 0:2r F . Using the Marching Cubes algorithm [36, 55], we
identify the volumeV (inside the frustumF) where the densityr is
above the thresholdr 0. More precisely, we de�ne the scalar quantity

f (r ) = min
�

r (r ) � r 0

s r
;
d(r )
DL

�
;

whered(r ) is thesigneddistance from the lasso of the projectionrs of
r on the screen, that is, if we denote byd(r ) � 0 the distance ofrs from
L thend(r ) = d(r ) if rs is inside L andd(r ) = � d(r ) otherwise. To
ensure that the physically disparate compared quantities have the same
order of magnitude we scale distances by the lasso diameterDL and
densities by the density standard deviations r . VolumeV then results
as the set for whichf (r ) � 0.

In the previous step we automatically set the density threshold tor 0.
To facilitate �ner control of the selection volume we provide means to
interactively adjust the threshold at runtime in the range[r 0=16;16r 0]
by mapping a linear parameters2 [� 4;4] to the threshold value using
r s = 2sr 0. Whens is adjusted, we thus recompute the scalarf (r )
for all grid nodes withr 0 replaced byr s and obtain the iso-surface
f (r ) = 0 using Marching Cubes. It is important to note that we only
need to recomputef (r ) in this case becauser (r ) andd(r ) remain
constant, therefore adjusting the threshold is computationally much
less expensive than the previous step and can be done interactively.

If V consists of a single connected component then we take this to be
the selection volume and all particles insideV are marked as selected—
SpaceCast would then work similar to CloudLasso. In general, however,
V consists of more than one disjoint volumesV1; : : : ; VK . We identify
these volumes using the algorithm described in Sect. 3.5.

In contrast to CloudLasso and WYSIWYG selection, however, we
now use the shape of the drawn lasso to select one of the disjoint
volumes. In particular, we project the volumeVk, for eachk = 1; : : : ;K,
to an areaSk on the screen. We then compare each areaSk to the areaSL
enclosed by the lassoL and identify the areaSkM , with kM 2 f 1; : : : ;Kg,
that has the maximal overlap withSL. We then determine the selection
volume to beVkM , except in the following case. We choose the selection
volume to beVkN if there is a volumeVkN such thatSkN > 0:8SkM and
VkN is closer to the eye compared toVkM , for the following reason. Let
us suppose that the user tries to select a clusterVA in front of a more
extended clusterVB as shown in Fig. 2(a). If the user then draws a
lassoL encirclingSA we generally getSA < SL (becauseL will not be
perfectly wrapped aroundSA) but SB = SL. Choosing the area with
the largest overlap would then giveVB—although the intention was
VA. If more than one volumeVkN exists that satis�es the condition
SkN > 0:8SkM , we choose the one closest to the eye.

We note here that if the structure of the dataset and the density
threshold are such thatV consists of a single connected component
then SpaceCast and CloudLasso give the same result. Furthermore, if
the density threshold is set to a very low value then SpaceCast gives
the same result as a simple cylinder-based selection.

3.2 TraceCast

A potential problem arises for SpaceCast in certain cases when a se-
lection in complex dataset is required: SpaceCast requires the users to
always outline the desired clusters fairly accurately and to draw closed
(or almost closed) lasso loops. To ease such interaction we thus present
TraceCast which, despite being only subtly different in its de�nition,
can thus lead to signi�cantly different interaction schemes as well as
different selected sub-spaces.

With TraceCast the user draws a lasso-like strokeL around the
particles to be selected as before. If the stroke is not closed, we close it
as described in Sect. 3.1. However, unlike SpaceCast, we do not only
consider the resulting frustumF but also take regions outsideF into
account for all subsequent operations. We �rst compute an approximate
average densityr F insideF, as for SpaceCast. We then choose the
initial density threshold asr 0 = 0:2r F . Using the Marching Cubes
algorithm, we identify the volumeV in the whole space where the
densityr is above the thresholdr 0. In particular, the volumeV is
where f (r ) � 0 but for this case we de�ne the functionf as

f (r ) = r (r ) � r 0:

whose thresholdr 0 can interactively be modi�ed as in SpaceCast.
We then consider the disjoint volumesV1; : : : ; VK that formV and

use the lasso shape to select one of these disjoint volumes. As in Space-
Cast, we project the volumeVk, for eachk = 1; : : : ;K, onto an area
Sk on the screen. Note that in TraceCast the volumeVk can project
(completely or partly) outside the areaSL that is enclosed by the lasso-
like strokeL. We discardVk if it projects completely outsideSL (that
is, Sk \ SL = /0). Otherwise, we compare the areaSk to the areaSL
enclosed by the lassoL and assign it anoverlap measuremk, de�ned as

mk = area(Sk \ SL) � area(Sk 4 SL) = 2area(Sk \ SL) � area(Sk [ SL);

where4 represents the symmetric difference of two sets as shown in
Fig. 2(b). We thus identify the areaSkM , with kM 2 f 1; : : : ;Kg, that has
the maximal overlap measuremkM and choose the selection volume to
be the corresponding volumeVkM . Our approach for TraceCast thus
results in selecting that subset of space generally in the area of the
lasso-like stroke that best approximates its shape.

Finally, we note that although TraceCast depends on the user-drawn
lasso, the latter can be much less precise than in SpaceCast. This is
clearly shown in Fig. 1(b) where a galaxy is selected using a “swirling”
stroke. Using SpaceCast in the same dataset, we would need to draw a
lasso that surrounds the target galaxy since SpaceCast does not consider
any particle for the selection that falls outside the lasso.

3.3 PointCast

While SpaceCast and TraceCast are well-suited for larger clusters with
often complicated structure, in practical applications we also frequently
need to be able to quickly select many smaller structures—in a way like
using ray-pointing to select dedicated objects in a 3D scene. We thus
also introduce PointCast, a technique based on the concept of treating
whole clusters as individual objects and using the simplest interaction
method—a single click or touch action—to mark such a cluster.

With PointCast we thus start by projecting a ray into the dataset,
guided by the marked point that is located on the interior of the target's
projection to the screen. To be able to infer the intended selection
volume, we start by identifying a density threshold as follows. We �rst
sample the particle densityr at equally spaced points along the ray,
from the closest pointr0 to the farthest pointr1 that still lies inside the
bounds of the dataset. Let

r (s) = r (r0 + s(r1 � r0)) ; 0 � s � 1;

represent the particle density along the ray. By samplingr (s) we then
obtain the sequencer i = r (si) with si = i=Ns for i = 0;1; : : : ;Ns where
Ns+ 1 is the number of sample points. We identify clusters along this
ray by locating the intervals along the ray wherer (r ) � 0:1 maxf r ig.
This produces a sequence of intervalsI1 = [ sa1;sb1], I2 = [ sa2;sb2], etc.,
each of these intervals corresponding to a cluster.
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Fig. 3. (a) Near-hit in PointCast. The target cluster VA is behind the
cluster VB. The selection ray passes nearby, but outside, VB. (b) The
graph of the density �eld along the selection ray. PointCast discards
the spurious �rst increase in the density. The size of the colored areas
represent the accumulated densities sA and sB.

With PointCast we usually assume that the desired selection volume
is the one closest to the eye, i. e., the one corresponding to the interval
I1. Nevertheless, there are two cases where this may not be the correct
choice. The �rst case is when a very faint cluster is in front of a more
prominent one; we assume that in this case the user is interested in the
prominent cluster behind. The second case is illustrated in Fig. 3. Here,
the ray passes close to, but not through, a clusterVA before reaching
clusterVB, the latter being the desired selection as shown in Fig. 3(a).
The KDE method we use to obtain the density �eldr (see Sect. 3.4)
smoothens out the density �eld and hence yields a thin density `halo'
around each cluster. We thus detect a small increase of the densityr (s)
along the ray nearbyVA if the ray passes very close toVA as shown in
Fig. 3(b). Consequently, PointCast would pick the �rst clusterVA along
the ray—surprisingly for a user because this density `halo' is invisible.

In order to account for these two cases we also consider the ac-
cumulated density in each intervalIk. In particular, we de�ne the
accumulated density for the intervalIk as

sk =
1
Ns

bk

å
i= ak

r (si) '
Z sbk

sak

r (s) ds

which is a measure of the total `mass' contained in the interval. We
then compare the accumulated densitiess1 in the �rst interval I1 and
sM = maxf skg in the intervalIM with the maximal accumulated den-
sity. We �nally select the cluster corresponding to the �rst intervalI1,
unlesss1 < 0:1sM in which case we select the cluster corresponding
to intervalIM . For the selected intervalIS we then compute the position
rS along the ray where the maximumr S of r insideIS is attained.

Finally, we set the density threshold tor 0 = 0:2r S. Using the March-
ing Cubes algorithm we identify the volumeV in the whole data space
where the densityr is above the thresholdr 0. As with TraceCast, we
derive the volumeV using f (r ) = r (r ) � r 0 � 0. We then consider
the disjoint volumesV1; : : : ; VK making upV and use the previously
described analysis to select one of these volumes. In particular, the �nal
step in the method is to select the volumeVS that contains the pointrS
identi�ed earlier.

The thresholdr 0 can be interactively modi�ed as in the other two
methods. This provides us with a powerful mechanism to trace con-
nected structures: asr 0 is lowered, more volumes that were previously
disjoint will merge, creating an ever-increasing connected component
within the data that is seeded by the �rst cluster that was identi�ed. We
show examples for this interaction strategy later in Sect. 5.3.

3.4 Density Estimation

A common aspect of all methods in the Cast family is that they re-
place the particle position information by a continuous density function.
We use the same continuous density, based on a standard Kernel Den-
sity Estimation (KDE) technique, as done by Yu et al. [56]. To aid
comprehension, we brie�y summarize its construction next. KDE
methods obtain a smooth density function by `smearing' each particle
over a larger volume. We consider a rectangular boxB that covers the
dataset (or the region of interest if the latter is restricted) and a uniform
grid with nodes at positionsr (n) where the superscriptn identi�es the
node. For the estimation of the scalar density �eld we use the modi�ed
Breiman kernel density estimation method (MBE) with a �nite-support

adaptive Epanechnikov kernel [20, 52]. This works as follows. First,
for each directionk = x;y;z, we de�ne the smoothing length

`k = 2(P(80)
k � P(20)

k )=logN;

whereN is the particle count inB andP(q)
j is coordinatek's q-th percen-

tile value. Then, we derive thepilot densityr pilot(r (n)) at noden as

r pilot(r
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wherer (i;n) is the vector withk-th component

r (i;n)
k = ( r (i)

k � r (n)
k )=`k;

kr (i;n)k its length, andE(x) = 1� x2 for jxj � 1 while E(x) = 0 for
jxj � 1. The speci�c form of the Epanechnikov kernel,E(x), implies
that only particles for which the noden is inside an ellipsoid with
semi-axes̀x, `y, `z centered at the particle contribute tor pilot(r (n)).

The pilot densityr pilot(r (i)) at the position of thei-th particle is then
given by multi-linear interpolation with respect to the nearby nodes.
For each particlei and withk = x;y;z we then de�ne the smoothing

lengths̀ (i)
k which are unique to each particle as

` (i)
k = minf `k(m=r pilot(r

(i)))1=3;10skg;

wherem is the arithmetic mean ofr pilot(r (i)) over all particles in B,
andsk is the distance between adjacent grid points in thek-th direction.
Now, we can re-de�ne the vectorsr (i;n) as

r (i;n)
k = ( r (i)

k � r (n)
k )=`(i)k :

The densityr (r (n)) at the noden is then

r (r (n)) =
15

8pN å
i

1

` (i)
x ` (i)

y ` (i)
z

E
�
kr (i;n)k

�
:

Finally, we compute the densityr (r ) at an arbitrary position using
multi-linear interpolation with respect to the nearby nodes.

3.5 Identi�cation of Disjoint Volumes

A common step in the Cast methods is to identify the disjoint volumes
that constitute the volume as computed by the Marching Cubes isosur-
face extraction. We do this using an algorithm similar to that of Shan
et al.'s [43] WYSIWYG selection. In contrast to Shan et al.'s approach,
however, we identify disjoint volumes by �rst identifying the connected
components of the Marching Cubes isosurface. This leads to a more
robust detection that does not have any problems with nearby but dis-
joint selection volumes that could be wrongly identi�ed as part of the
same component. Speci�cally, we �rst use a disjoint-set data structure
to compute equivalence classes for the faces that make up the Marching
Cube isosurface, where we consider two faces to be equivalent if they
share an edge. Each such equivalence class represents a connected
component of the isosurface. This task is signi�cantly simpli�ed by the
fact that we keep track of the relations between vertexes, edges, and
faces of the isosurface. We �rst assign an indexk 2 f 1; : : : ;Kg to each
equivalence class, and thus to each connected isosurface component.
We then consider the grid-nodesr (n) . To each of these grid-nodes
that lies inside the isosurface (i. e., for whichf (r (n)) � 0) we assign
the index of the connected isosurface component using a �ood-�lling
algorithm. We start with a grid-cell that contains a face with a given
indexk. Then we �nd a node in this cell that is contained within the
isosurface component with indexk. We assign the indexk to the found
node and then we proceed to neighboring nodes assigning the same
indexk if they can be reached without crossing the isosurface. We thus
identify all grid-nodes with indexI . By repeating this process for all
indices, we �nally mark each node with an indexk 2 f 1; : : : ;Kg if it
lies inside the Marching Cubes isosurface. For completeness, we assign
the indexk = 0 to nodes outside the isosurface.
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Fig. 4. Four datasets: (a) multiple particle clusters, (b) semispherical shell
with half-ball inside, (c) three rings, and (d) an N-body mass simulation;
named clusters, shell, rings, and simulation in the study description.

4 USER STUDY

In order to understand user performance with our new selection methods
in different situations we conducted a comparative quantitative user
study. We compared the Cast methods with the traditional selection
method based on generalized cylinders and with the structure-aware
method CloudLasso, according to time and accuracy of the selection.

4.1 Study Description

Participants Twenty people (14 male, 6 female) participated in the
study. 15 participants were students from different disciplines and
�ve non-students. Eight of them had at least a Bachelor's degree.
16 participants reported prior experience with 3D computer games
with playing games up to two times per day, with ten participants
reporting at least weekly experience. Ages ranged from 18 to 35 years
(M = 23:4;SD= 4:8). All participants reported to be right-handed.

Apparatus The experiment was performed on a Microsoft Surface
Pro 2 (1280× 800 pixels). The surface recognizes touch as well as a
pen input. While participants had the freedom to use either direct touch
or the pen as their input method, all decided to use the pen input.

Datasets Our study comprised four datasets, as illustrated in Fig. 4.
The datasets contained target particles (orange), interfering particles
(blue), and noise particles (light blue). These datasets were designed to
have different features that made selection of targets challenging:

Clusters: The clusters dataset in Fig. 4(a) contained 15 compact clus-
ters of particles with equal uniform densities inside a low density
noise environment. The target cluster was located in the center so
that no viewing direction allowed a clear view to the whole target.

Shell: The shell datasets in Fig. 4(b) included a half-ball of target
particles partially surrounded by a semispherical shell of interfering
particles. Both structures had the same uniform density.

Rings: The rings dataset (Fig. 4(c)) contained a circular `ring' in-
tertwined with a `�gure-8' (a `double ring'), inside a low-density
noise environment. Each ring had the same uniform density and
participants were asked to select the circular one. In this dataset
the structure of the target intertwined with other structures, making
selection challenging.

Simulation: Fig. 4(d) shows a cosmological N-Body simulation
dataset with a high density core in the center and many small and
high density clusters all around the space. Participants were required
to select several small clusters. This real-world dataset was chosen
to represent a realistic selection scenario in astronomy. Considering
that the high density core is relatively easy to select with any tech-
nique, we chose small clusters as the target to see how our selection
strategies worked when multiple selections had to be performed.

Task and Procedure Participants were always asked to select all or-
ange target particles and avoid selecting interfering or noise particles.
Before the actual experiment, participants practiced with three addi-
tional training datasets to get accustomed to the selection techniques.
The practice datasets were chosen to explain the differences between
techniques and the interaction with the experimental software. These
practice datasets included: 1) a simulation of two colliding galaxies (for
practicing trackball rotation), 2) �ve randomly placed compact clusters
of particles with equal uniform densities inside of a low-density noise
environment, with one being set as the target cluster (for explaining
how the method works and the differences compared with other meth-
ods), and 3) a higher-density volume of orange target particles with

two simple geometric shapes: a pyramid and a torus (for explaining the
method for different selection target shapes). In the training trials, we
gave the participants as much time as they wanted, before proceeding
to the actual experiment. Training took on average 14 mins for Cy-
linderSelection, 8 mins for CloudLasso, 7 mins for SpaceCast, and 6
minutes each for TraceCast and PointCast.

We asked participants to perform their selections as quickly and accu-
rately as possible but we did not tell them when they had accomplished
the selection goal. For each trial-dataset combination we chose a unique
dataset starting orientation, that changed between trials but was kept
the same for different participants. We also counter-balanced the or-
der of selection methods presented to the participants such that each
possible starting-ending pair of methods was used exactly once and
that no participant saw the same progression order. To avoid measuring
unnecessary time spent on navigation, we only provided trackball rota-
tion. A selection was activated after participants pressed a `selection
button' to change to selection mode, otherwise the 2DOF input on the
data was used for rotation. We provided three possible selection modes,
corresponding to three Boolean operations: union (+ ), intersection
(\ ), and subtraction (� ). We also provided a slider (Fig. 14) through
which participants could adjust the automatically determined density
threshold even after rotating the view. As Yu et al. [56] had previously
discussed, subtraction and intersection are best done using CylinderSe-
lection and not using structure-aware techniques. We thus implemented
subtraction and set intersection as CylinderSelection in all trials.

We allowed participants to undo/redo the �ve most recent operations.
Once they felt that they accomplished the selection goal or that they
were not able to improve the result, they could press a �nish button to
advance to the next trial.

Design We used a repeated-measures design with the within-subject
independent variablesselection technique(CylinderSelection, Cloud-
Lasso, SpaceCast, TraceCast, and PointCast) anddataset(Clusters,
Shell, Rings, Simulation). Each technique was used for each dataset in
3 repetitions. In summary, the design consisted of 20 participants× 5
methods × 4 datasets × 3 repetitions= 1200 trials in total.

Measures and Analysis After an inspection of timing results, we re-
moved the �rst repetition of each dataset× technique combination in
order to reduce the in�uence of learning effects. This left us with 40
trials per participant (800 trials in total). Traditionally, such study data
would have been analyzed using null-hypothesis signi�cance testing
(NHST). The use of NHST, however, has been increasingly criticized
as a tool to analyze user study experiments [12, 17, 18], also discussed
in the context of visualization [16, 27]. Consistent with recent APA rec-
ommendations [50], we thus report results using estimation techniques
with effect sizes and con�dence intervals rather thanp-value statistics.

To compare the �ve techniques, we measured task completion time
and computed two different accuracy scores, the F1 and MCC scores,
similar to Yu et al.'s work [56]. Both accuracy scores are based on the
identi�cation of true positives (TP, number of correctly selected parti-
cles), false positives (FP, number of incorrectly selected particles), and
false negatives (FN, number of target particles that were not selected).
The F1 score is a weighted average of precisionP= TP=(TP+ FP) and
recallR= TP=(TP+ FN) and is often used in information retrieval to
assess query classi�cation. F1 is calculated as:F1= 2� (P� R)=(P+ R).
The second accuracy measure, the Matthews correlation coef�cient
(MCC), additionally uses the number of true negative particles (TN,
non-target particles that were not selected) to calculate an accuracy
score. It is commonly used in machine learning for the assessment of
binary classi�ers. MCC is calculated as:

MCC =
TP� TN� FP� FN

p
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

:

Both scores normalize accuracy: for F1, 1 indicates a perfect perfor-
mance and 0 represents the worst possible result, while the correspond-
ing values for MCC are 1 and -1. For accuracy scores we computed
means and 95% bootstrap con�dence intervals (alln = 20) [32].

We analyzed completion time data using exact con�dence intervals
on log-transformed data (alln = 20) making outlier removal unneces-



Table 1. Mean task completion times, accuracy scores, and their 95%
con�dence intervals per technique.

Technique Time CI F1 CI MCC CI

Cylinder 88s [73,106] .96 [.95,.97] .96 [.95,.96]
CloudLasso 43s [38,48] .96 [.96,.97] .96 [.95,.97]

SpaceCast 23s [20,27] .97 [.94,.97] .96 [.93,.97]
PointCast 16s [13,19] .97 [.93,.98] .97 [.93,.98]
TraceCast 18s [16,20] .97 [.97,.98] .97 [.97,.98]

Fig. 5. Mean completion time (in seconds) across all participants for
each selection technique. Error bars show 95% con�dence intervals.
Means are geometric means.

Fig. 6. Ratios between mean completion times for the Cast selection
techniques. Error bars show 95% con�dence intervals.

sary [42]. For completion time, all reported means are thus geometric
means, and comparisons between means are expressed as ratios [22].

4.2 Results

Here we report results of both the quantitative analysis as described
above, the results of the post-session questionnaire, as well as a few
observations from watching participants complete the study.

4.2.1 Overall Results: Time, Accuracy, and Preference

Fig. 5 shows the mean completion times and 95% con�dence intervals
for each technique. We can see that CylinderSelection and CloudLasso
were much slower than the three Cast techniques. CylinderSelection
was also much slower than CloudLasso, which is consistent with the
results of Yu et al.'s [56] experiment. Exact average task completion
times as well as con�dence interval ranges are listed in Table 1. Given
the high completion time difference for CylinderSelection, Fig. 5 is less
clear as to the difference amongst the Cast techniques. Therefore, we
provide pairwise ratios of completion times of the Cast techniques in
Fig. 6. Here we can see that SpaceCast took about 1.3–2.2 times longer
than PointCast on average and 1.1–1.8 times longer than TraceCast.
Participants performed only about 1–1.4 times slower with TraceCast
than PointCast. Thus, overall we have good evidence that both Point-
Cast and TraceCast outperform SpaceCast, and some indication that
PointCast may outperform TraceCast. At any rate, the differences
among Cast methods are marginal compared to the differences between
each Cast method and CloudLasso or CylinderSelection.

At the beginning of the study (before the trials began), we had asked
participants how they would intuitively approach a selection of 3D
particle data. More than 80% of participants had then reported that
drawing a lasso would feel most natural. In the post-session ques-
tionnaire, however, 13 participants reported to favor the point-based
method PointCast. Out of the remaining participants, six preferred
the lasso-based method TraceCast and one participant preferred both
PointCast and TraceCast over the other techniques. This is interesting
also in the context of the actual results. The analysis of accuracy scores
(refer to Fig. 5 for exact numbers) for the �ve techniques shows that
participants were very accurate with all techniques. All F1 and MCC
scores are� .96 and, therefore, close to a perfect result (1).

Fig. 7. Mean completion time (in seconds) across all participants for
each dataset. Error bars show 95% con�dence intervals.

Fig. 8. Preferred techniques for each of the synthetic datasets.

How often participants adjusted the slider depended on technique
and dataset. Of the Cast techniques, the slider was on average adjusted
most frequently for the PointCast technique. For all techniques most
adjustments were necessary for the simulation dataset: 3.7 for Space-
Cast, 4.5 for TraceCast, 6.25 for PointCast. All other datasets saw two
or less adjustments on average per technique.

4.2.2 Analysis Per Dataset

Overall, participants completed all trials with similar completion times
in just under 30s on average for the three synthetic selection problems
Rings, Shell, and Cluster (see Fig. 7). Trials of the simulation dataset,
on the other hand, were completed in over one minute on average, so
the selection problem was more complex. Next we discuss the results
for the three synthetic datasets and the real-world dataset separately.

Synthetic Datasets As can be seen in Fig. 9(a-c), the ranking of
techniques according to task completion times for each of the datasets
is similar to the overall ranking result. The three Cast techniques
outperform CloudLasso and Cylinder for each of these three datasets.
Amongst the Cast techniques, SpaceCast was generally the slowest with
TraceCast and PointCast showing similar averages. Table 2 shows that
the accuracy scores were also similarly high for each of the selection
problems, when examined by technique.

In the post-session questionnaire we had asked the participants to
choose the method they preferred for each dataset. PointCast was
the preferred technique for all datasets, with exact numbers reported
in Fig. 8. Participants preferred PointCast for the clusters datasets
because it was fast (6×), accurate (9×), and because it was easier to
select occluded particles (10×). Similar reasons were given also for
the other datasets, with slightly different frequencies. TraceCast was
the second most preferred technique across all datasets. Reasons for
choosing TraceCast were that it offered a feeling of control and more
accuracy, in particular for the Shell dataset where it was possible for
PointCast to select unwanted clusters given certain viewing directions.

N-body mass simulation In this dataset we tested a multi-step se-
lection process by asking participants to select several small clusters
that were located in different places in space. Participants thus needed
to rotate the whole space in order to �nd the targets. This explains
the increased task completion time for this dataset (see Fig. 7) when
compared to the three synthetic datasets. Interestingly the ranking of
techniques according to task completion time changed for this dataset.
Cylinder was still by far the worst technique for this task. The perfor-
mance of CloudLasso, however, was much closer to the Cast techniques
than for the other datasets (see Fig. 9(d)). In Fig. 10 we can see evi-
dence that participants performed almost equally well with CloudLasso
and SpaceCast as well as with PointCast. The highest ratio difference
between techniques was found between TraceCast and SpaceCast, with
TraceCast performing 1.2× slower than SpaceCast. In summary, this
comparison provides us with some evidence that SpaceCast performed



(a) Clusters Dataset

(b) Shell Dataset

(c) Rings Dataset

(d) Simulation Dataset

Fig. 9. Mean completion time (in seconds) across all participants for each
selection technique and each dataset. Error bars show 95% con�dence
intervals. Means are geometric means.

Table 2. Mean task completion times, accuracy scores, and their 95%
con�dence intervals per technique and dataset.

Technique Time CI F1 CI MCC CI

Clusters Dataset

Cylinder 65s [53,80] .99 [.98,.99] .99 [.98,.99]
CloudLasso 41s [36,48] .99 [.98,.99] .99 [.98,.99]

SpaceCast 18s [14,24] .99 [.98,.99] .99 [.98,.99]
PointCast 10s [8.8,12] .99 [.95,.99] .99 [.96,.99]
TraceCast 12s [11,14] .99 [.98,1] .99 [.98,1]

Shell Dataset

Cylinder 86s [71,105] .97 [.97,.97] .96 [.96,.97]
CloudLasso 46s [39,54] .95 [.92,.96] .94 [.91,.96]

SpaceCast 21s [17,25] .95 [.86,.98] .94 [.82,.97]
PointCast 10s [8.2,13] .97 [.93,.98] .97 [.93,.98]
TraceCast 11s [9.6,14] .98 [.97,.98] .97 [.97,.98]

Rings Dataset

Cylinder 66s [55,87] .96 [.96,.97] .96 [.94,.96]
CloudLasso 35s [27,45] .98 [.97,.98] .97 [.96,.98]

SpaceCast 16s [13,19] .98 [.97,.98] .97 [.96,.98]
PointCast 10s [7.9,13] .97 [.91,.99] .97 [.91,.98]
TraceCast 11s [9.7,13] .98 [.97,.99] .98 [.96,.98]

Simulation Dataset

Cylinder 161s [134,192] .92 [.91,.93] .92 [.91,.93]
CloudLasso 50s [43,59] .94 [.93,.95] .94 [.93,.95]

SpaceCast 49s [41,57] .94 [.93,.95] .94 [.93,.95]
PointCast 58s [51,65] .94 [.89,.96] .95 [.90,.96]
TraceCast 60s [51,70] .95 [.93,.96] .95 [.93,.96]

slightly better than the other Cast techniques, but also that participants
were almost equally fast with CloudLasso. Similar to the other datasets,
however, accuracy was high for all techniques as we show in Table 2.

In the post-session questionnaire, nine participants reported that they
preferred PointCast for this dataset because it helped them directly point
out the particle clusters as 3D objects. Some of them `complained' that
it would have been even better if they could have continuously picked

Fig. 10. Ratios between completion times for the simulation dataset.
Error bars show 95% con�dence intervals.

clusters, without switching back to the rotation mode.2 However, ten
participants reported that they preferred a lasso-based selection method
because the lasso gave them a better sense of control by allowing
them to enclose all wanted particles with a lasso. This was especially
true with CloudLasso, when all 3D target clusters were selected after
participants added a 2D lasso and adjusted the threshold. The remaining
participant reported that he liked all Cast methods.

5 DISCUSSION

Based on these results and selection strategies, we now compare
the evaluated selection techniques. We not only discuss the relative
strengths and weaknesses of each method, but also contemplate the
users' selection strategies in different situations.

5.1 Conceptual Foundation

Our new Cast techniques are all spatial, structure-aware selection tech-
niques, a property they share with CloudLasso. However, we signif-
icantly improve upon CloudLasso as demonstrated by the user study.
The fundamentally new idea put forward by the Cast methods is that
the speci�c user interactions used to make the selection already contain
rich information about a user's intention, and consequently we take
advantage of this information for the Cast techniques. Even without a
precisely draw lasso we thus enable users to obtain accurate and fast
results, based on our heuristics that guess a user's intention. Ultimately,
it is therefore the interacting user who decides which method to employ,
based on the given dataset and exploration situation.

SpaceCast is conceptually closest to CloudLasso. Nevertheless,
it improves upon it by only selecting a single component of the set
of subspaces indicated by the lasso, facilitating different selection
strategies: While CloudLasso can be used for multiple connected or
non-connected targets in one step, SpaceCast allows users to specify a
single intended target cluster though the shape of the drawn lasso.

TraceCast and PointCast deviate conceptually from SpaceCast and
CloudLasso in that they no longer restrict the domain where a selection
is made within some stroke or other input, thus no longer requiring
an actual lasso to be drawn. Moreover, and more importantly, the
conceptual basis of these two methods is that they treat clusters as
distinct objects and no longer just as an arbitrary collection of particles.
This new concept facilitates more freedom and �exibility in designing
selection heuristics, either as simple click or touch operations with
PointCast or using a shape recognition approach as in TraceCast.

5.2 Selection Scenarios

To better illustrate the different characteristics of the new selection
methods we now discuss them with respect to changing selection sce-
narios: the selection of multiple clusters, the selection of a part of a
cluster, and the selection of partially or completely occluded structures.

Multiple clusters SpaceCast and TraceCast are based on a user-drawn
2D stroke, while PointCast requires pointing at the target. Point-based
methods such as PointCast are usually faster for selecting single targets
because they do not require any drawing. The trade-off lies in the
resulting accuracy and needed �ne-tuning since the 2D stroke used in

2This issue is due to the interaction design with the mouse/pen-based input—
for the future we envision to either provide a dedicated selection mode for such
input modalities or to use bi-manual control for touch-based interaction.



(a) (b)

Fig. 11. CloudLasso (a) is able to get several disconnected parts with an
interactively adjusted density threshold. PointCast (b) requires individual
operation for each cluster.

(a) (b) (c) (d)

Fig. 12. CloudLasso (a) and SpaceCast (b) can select part of a cluster.
TraceCast (c) and PointCast (d) treats clusters as individual objects.
The four selections in each example are made from roughly the same
viewpoint with respect to the particles.

SpaceCast and TraceCast provides more information about the likely
user intention. Theoretically, all selection methods are able to select
multiple clusters if there is no time limitation or restrictions on the
number of Boolean operations. CloudLasso, in fact, supports selection
of several clusters in one step, although users typically need to adjust
the density threshold to arrive at the desired results (Fig. 11(a)). In
the user study, however, we observed that participants tended to select
clusters one-by-one and use Boolean operations, where necessary, to
adjust their selection. Our new methods SpaceCast, TraceCast, and
PointCast thus only select connected volumes and, therefore, require
(at least)N operations for the selection ofN clusters. The PointCast
method is consequently particularly ef�cient for such selections of a few
small clusters (Fig. 11(b)), while SpaceCast and TraceCast facilitate
the selection of few more complex clusters.

Partial selection Both TraceCast and PointCast are based on the
concept of treating clusters as individual objects, and they do not
facilitate the direct selection of a subset of a cluster (although the
latter is always possible through Boolean operations). SpaceCast (just
as CloudLasso), in contrast, does facilitate partial cluster selection
(Fig. 12) since the selection is always restricted within the drawn lasso.

Occlusion All Cast methods support the dedicated selection of par-
tially occluded targets (Fig. 13)—in contrast to previous structure-aware
selection methods. The impact of this property is re�ected in the results
of the post-session questionnaire, in which our participants rated all
studied techniques on selecting in a noisy environment with occluded
targets on a 7-point Likert scale. Cast methods were rated highly with
an average of 6 (agree), CloudLasso was rated at an average of 4.5 (be-
tweenno opinionandsomewhat agree) and CylinderSelection received
an average rating of 2.7 (betweendisagreeandsomewhat disagree). To
achieve the selection of partially occluded clusters, SpaceCast requires
users to trace the border of the target. PointCast, in contrast, only needs
a small part of the target to not be occluded in order to facilitate picking
it out from other clusters. TraceCast, �nally, was regarded as the most
effective method with respect to this point by the study participants.
The reason was that, with TraceCast, the right cluster would be selected
as long as its shape was closer to the input lasso than compared to that
of other clusters—even if the target cluster was completely occluded.

5.3 Uncovering Global Structures

The selection volume created by PointCast selection depends to a large
degree on the choice of the chosen density threshold, and at the same
time is in no way restricted by a lasso. This property allows us to use
PointCast to analyze how different parts of the dataset are connected

(a) (b) (c)

(d) (e) (f)

Fig. 13. Hidden structures: (a) lasso drawn around the target. CloudLas-
so (b) selects two disconnected components. TraceCast (c) selects the
one whose 2D projection best matches the lasso, in this case the hidden
one (both selection results viewed from roughly the same direction).
PointCast (d) also facilitates the selection of partially hidden clusters: in
(e) the front cluster is selected if the user points to the center, in (f) the
partially hidden cluster is found if the user points to a suitable place.

(a) (b)

Fig. 14. Uncovering global structures in halos. (a) A small cluster is
selected with PointCast. (b) Lowering the threshold reveals structures
connecting the initially selected cluster to other clusters in the dataset.

with each other. In Fig. 14(a) we show an initial selection produced
by PointCast using the automatically deduced density threshold, using
a sample of the Millennium-II dataset [45] which represents galaxy
halos. For the depicted selection case, the dataset contains more clusters
that lie above the density threshold but which initially are not selected
since they are not connected to the cluster under the clicked point. In
Fig. 14(b) we show the situation when the density threshold has been
lowered. Now, elongated structures have appeared that connect the
previously disjoint clusters and thus produce a single connected volume
that is now selected. This property of PointCast assists users in �nding
density concentrations in the dataset and helps them to understand how
these are connected to each other on a more global level. The stroke
based methods (SpaceCast, TraceCast, and the older CloudLasso) can
produce similar structures, albeit with certain restrictions. Especially
SpaceCast and CloudLasso can only reveal such connecting structures
within the drawn lasso. TraceCast does not share this restriction, thus
it can produce results similar to PointCast. Nevertheless, changing
the density threshold can lead to the shape of the selection volume
signi�cantly diverging from the shape of the drawn lasso or stroke
which may initially be surprising for some users.

5.4 Other Applications

The Cast methods were designed for selection in 3D particle datasets
in general. While most examples we show in this paper come from
astronomy, our methods can also be applied for selection in 3D particle
datasets of different origin. Such datasets do not even need to have a
spatial character but they could be based on other properties that can
be mapped to 3D space. Such a representation can be generated from
a multi-dimensional dataset by either choosing exactly three of these
dimensions or by �rst performing a Principal Component Analysis and
selecting the �rst three components. To show a practical example we
present a subset of the Hurricane Isabel dataset3 in Fig. 15(a). We used
the properties pressure, water vapor, andx wind component and show
selections with different Cast methods in Fig. 15(b)–(d).

3See http://vis.computer.org/vis2004contest/data.html or
http://www.vets.ucar.edu/vg/isabeldata/readme.html for details.
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Fig. 15. Cast selection in a 3D scatter plot of an abstract dataset: (a)
Pressure, water vapor, and x wind component from the Hurricane Isabel
dataset. (b) SpaceCast, (c) TraceCast, and (d) PointCast selection.

5.5 Limitations and Further Improvements

The main limitation of the Cast selection methods is their dependence of
an appropriate automatically determined density threshold. In datasets
with steep density gradients it is a dif�cult problem to determine an ap-
propriate initial value of the density threshold, and a manual adjustment
of the threshold can improve the selection. Nevertheless, such manual
adjustment is also a complication of the otherwise straight-forward
interaction used by the Cast methods. Furthermore, density gradients
are typically less steep at the edge of a cluster. This means that if a
selection volume already roughly matches the cluster boundary, and the
user tries to �ne-tune the selection, then a small decrease of the density
threshold produces a large increase of the selection volume. In the user
study, however, we have not found this problem to affect the results.

Nevertheless, the occasional need to manually adjust the density
threshold led some user study participants to remark that the TraceCast
and PointCast methods are not as accurate as SpaceCast—in the latter
the selection is always bound by the lasso. One way of improving this
manual threshold setting would be by using a mapping from the slider
position to the threshold value so that small movements of the slider
produce correspondingly small changes of the selection volume. A
very different approach would be to not use the density threshold for
determining the cluster boundary but to use other edge-detection algo-
rithms originating in the image recognition domain or using topological
analysis to determine an appropriate density isosurface [21].

We note here that the Cast methods have been designed for selec-
tion in particle datasets with distinct clusters. Particle datasets with
different structure characteristics may demand different heuristics for
determining an appropriate selection volume.

Finally, in the future we want to combine different selection tech-
niques in an integrated visualization and data analysis environment and
perform user studies with real-world scenarios to validate the results
of the present study. Since different methods are more appropriate for
different types of selection, keeping only one of them in our toolkit
would not be optimal. One possible combination would be that of
the lasso-based CloudLasso which allows multiple selection with the
point-based PointCast which allows ef�cient selection of individual
clusters. Nevertheless, the user study showed that SpaceCast and Trace-
Cast are also very strong contenders and a more thorough and extended
study in real-world environments would be necessary to help decide
between these very strong selection methods: CloudLasso, SpaceCast,
TraceCast, and PointCast. Potentially, all of them could be included,
together with Boolean operations that facilitate further �ne-tuning.

6 CONCLUSION

With SpaceCast, TraceCast, and PointCast we introduced a new family
of context-aware interactive selection techniques. Through a set of well-
designed heuristics, these techniques derive a user's selection intention
from the input he or she has provided. The techniques areeffective
because together they cover a wide range of possible selection goals,
based on each technique's individual selection algorithm and user input

gestures. Furthermore, our study showed that our new techniques are
ef�cient as they allow users to arrive at selections faster than with other
structure-aware techniques, without jeopardizing their accuracy.

Ultimately, our paper contributes to the development of �exible inter-
action environments for the exploration of complex data visualizations
[29]. As selection is needed in virtually any exploratory data analysis,
our new Cast family of techniques—together with the older CloudLasso
and Boolean operations—provides a powerful toolkit that can support
many different selection tasks and datasets in visualization. While we
did not speci�cally design the techniques for any particular type of
input device, SpaceCast, TraceCast, and PointCast are suitable not only
for mouse and pen-based input but also for newer input and interaction
paradigms [30] such as those based on touch (e. g., [11, 25, 26, 57]).
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