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CAST: Effective and Ef cient User Interaction
for Context-Aware Selection in 3D Particle Clouds

Lingyun Yu, Konstantinos Efstathiou, Petra Isenberg, and Tobias Isenberg, Senior Member, IEEE

Fig. 1. (a) SpaceCast selects particle clusters by enclosing them with a lasso, based on the lasso shape; (b) TraceCast does not require
an accurate lasso; and (c) with PointCast users can select tiny clusters from a noisy environment with only a single click or touch.

Abstract —We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle
datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive
target selection has been particularly challenging when the data subsets of interest were implicitly de ned in the form of complicated
structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial
selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural
input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be ne-tuned
after the selection interaction has been completed. Together, they provide an effective and ef cient tool set for the fast exploratory
analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only
to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always
faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were
strongly favored by our participants for intuitiveness and ef ciency.

Index Terms —Selection, spatial selection, structure-aware selection, context-aware selection, exploratory data visualization and
analysis, 3D interaction, user interaction

1 INTRODUCTION

Exploratory data visualization and analysi§]is a fundamental pillar 43, 56] were proposed that promise to deduce a person's selection
of many visualization systems. It provides domain experts with tools totention based on simple input, the characteristics of the dataset, and
study unknown datasets, an activity during which the data is examint current viewing conditions. All these techniques use a 2D lasso
more closely to discover interesting or unexpected patterns. One esssawn on the projection of the 3D dataset and then derive a selection
tial tool for exploratory visualization is the ability to select differenvolume, typically by analyzing the particle densi¥3[ 56] or the
subsets of the dataséd], based on the current state of the exploratioscalar properties of volume data [39]. While these approaches present
and/or one's own intuitions. Selection is relatively easy for 2D dataseasconsiderable improvement to a cylinder-based lasso selection in 3D
by means of picking, lasso-selection, or brushing. Three-dimensiosghce, all of them require the users of a visualization system to rst nd
datasets such as particle simulations, however, pose the much hagdgod view for the selection interaction—a task that is often dif cult or
challenge of needing to specify one or more 3D volumes that encldsgpossible in realistic scenarios with complex datasets. Moreover, the
the intended subset of the data. Most existing selection mechanismsegisting structure-aware approaches do not take the location or shape
3D data B] provide means to pick or ray-point at objects, but these failf the drawn lasso into account when determining which part of the
if no explicit 3D shapes to pick exist—as it is the case for particle datnclosed data space may represent the intended selection region.
Recently, a number of structure-aware selection technig@@s [ In order to address these issues, we present SpaceCast, TraceCast,
and PointCast, a family of new interactive context-aware selection
techniques (CAST) (see Fig. 1). SpaceCast (Fig. 1(a)) analyzes the
+ Lingyun Yu is with Hangzhou Dianzi University, Zhejiang, China. E-mailparts of the clusters that project inside the 2D lasso, selecting only the

mail@yulingyun.com. part that has the best overlap with the input lasso. TraceCast (Fig. 1(b))
* Konstantinos Efstathiou is with the University of Groningen, the is inspired by stroke recognition techniques, such as those used for
Netherlands. E-mail: k.efstathiou@rug.nl. the input of Chinese characters. In contrast to SpaceCast, TraceCast

* Petralsenberg is with Inria, France. E-mail: petra.isenberg@inria.fr.  does not use the lasso metaphor but interprets the path of the drawn
+ Tobias Isenberg is with Inria, France. E-mail: tobias.isenberg@inria.fr. selection stroke, selecting that candidate cluster whose 2D projection is
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e-mail to: tvcg@computer.org. they are occluded (partially, or even completely) by others. PointCast

(Fig. 1(c)), nally, uses the picking/ray pointing metaphor known from



traditional 3D selection. It evaluates potential candidate clusters along face another spatial dimension, but we also are typically limited to
the line of sight, selecting the rst one that matches a density threshgidoviding input in a 2D space (such as through mouse movements, pen
determined based on the densities along the ray. These three techniduast, or touch input). Unless one is only interested in a single location
thus suit a variety of different selection needs and, together, they fo(en g., voxel) b1] or surface patch47] determined (i. e., picked) in a
a powerful selection toolkit for analyzing particle datasets. context-aware fashion, this task therefore requires the more dif cult
After a discussion of related work in Section 2, we introduce thgpeci cation of a suitable 3D enclosing volume.
three context-aware selection techniques in detail in Section 3. WeOwada et al.'s39] Volume Catcher, for example, solves this problem
then present the results of a controlled user study in Section 4 in whigr unsegmented volume data by asking users to draw 2D strokes
we evaluated the performance of the Cast selection techniques alwhg the perceived borders of features for unsegmented volume data,
compared them to the state-of-the-art selection methods. In Sectiocarfdl then deduces an appropriate segmentation of the dataset, i.e., a
we then critically re ect on these results and what they mean for realistiglection. In an approach designed for line data, AkeilsCINCH
application scenarios, show and assess a number of examples taenides a marking interface for structure-aware 3D neurologic pathway
from scienti ¢ domains, and discuss limitations and future work, beforselection. Yu et al.'s [56] TeddySelection and CloudLasso allow users

concluding the paper in Section 6. to enclose spatial regions with a lasso drawn on the 2D projection
and derive an appropriate selection subspace for particle data. They
2 RELATED WORK demonstrate, in particular, that their CloudLasso is able to handle

omplex scenarios in less time than a simple cylinder-based selection.

alization systems, “as ubiquitous as selecting icons in a desktop Gan et al-43 then discuss an extension to CloudLasso, in that they
[53] and many variants exist as Will§3 shows with his taxonomy analy_ze the different clusters that are generated by the_ CI_oudLasso
of selection techniques. For the speci c case of 3D representationd@fhnique and only select the one with the largest 2D projection.
scenes, numerous methods have been created to select items and shagd¥ese context/structure-aware selections thus all specify what is
[3, 7]. For example, many approaches for selection by means of 3eresting by derlv!ng a sub-space, doing that in a manner that depends
raycasting have been created (e. 8, 34, 37, 40, 54]). Also special ©On the data, the view, and other paramet&g}. [ While Wills [53]
techniques, for example, for 3D streamline selection (e28,,31, 58)) derives his taxonomy of selection t.ech.nlque.s for visual epcodlngs
and selection in different data spaces (e.24])[have been created. of abstract data on the 2_D _plane, his distinctions of selections with
In our work, however, we are less interested in distinct objects B&SPect tospace differentiatiorand data dependencglso apply to
cause, in the case of particle datasets, the single object (i. e., partielg)three-dimensional datasets as he also discusses selection as a way
typically has no meaning and 3D pointing techniquélsijould not 0 qutlally spequ what to investigate fu.rther. The Cast family of
be appropriate to select single particles—instead, groups of partickédection techniques that we discuss in this paper are, heéatzede-
or particle clusters are important for a further analysis. This meaRgndent toolshat provide intuitive means to specify selection through
we need selection techniques based spatial speci cationof a 3D @ lasso, through a drawn stroke, or through a speci ed point. We
sub-space that contains the elements to be further explored, with #es address the challenges of the existing structure-aware selection
challenge that this sub-space does not explicitly exist in the data. techniques39, 43, 56] which are only able to make global decisions
Initial approaches for spatial selections used simple shape primitii8§ the entire dataset (or the lasso-enclosed part), while SpaceCast,
that were easy to manipulate in 3D space such as c86p44|. Haan et _Trac_:t_eCast, an_d PointCast derive criteria _for more local, precise, and
al.'s [13] IntenSelect extended this concept for the selection of movirlgtuitive selections by the shape and location of the drawn primitive.
targets by combining it with a constantly updated scoring function.
Particularly related to our work is Lucas and Bowmar33][Tablet 3 DESCRIPTION OF THE SELECTION TECHNIQUES

Freehand Lasso which also uses cone-based selection volumes bu‘rlgtachieve these goals, the Cast family members have to derive the
users dFaW thef_” on a 2D projection of the_ data‘ which |n_sp|red OUr O%R\ection intention of the user from the type and shape of the provided
interaction design. Of course, due to their reliance on simple selectipn " & - way that goes beyond a simple two-dimensional cut-off
shapes such as cones or cylinders, generic spatial techniques wil k as done by previous structure-aware approad@se]. We
imprecise by default. Progressive/iterative re nement strategies thH] s employ three dedicated heuristics that use different ways for in-

facilitate the speci cation of better selections, such as demonstra; : L : e
by Bacim et al. §], Elmquist et al. 1.9, and Kopper et al.33. We tl(%ractlvely constraining the selection volume. These heuristics do not

can make use of similar progressive re nement strategies by mean fctly use the particle posi@ions but _rather a c_c_Jntinuous density eld

Boolean operations based on the selected subspaces [53]. Sr? ) that represents the particle densnty)at a poit space’ We rst
Another form of deriving spatial selections is to use dedicated us%(?mpmtﬁ tt:je tden?'t%/’v etlg at (tihg notie@ (I)f a r]??hulz:\jr 3D;gr|dl(;hatlt

interaction strategies. Straight-forward techniques use some sor @yers the dataset. Ve then derve ev_a(le) ol the density €ld a

dedicated 3D input device (e. g., 3D mice, optical 3D tracking, LEABNY Other point in space through linear interpolation from the values

motion, etc.) and also simple selection primitives. For example, Ulins T r atthe ?r;d noc]i‘etﬁ clgses_ttto Fl?jr lc?mpleganetsz, Xve brie y review

et al. 49] and Cabral et al.J0] position a cube resp. a sphere with € computation of the density eld later in Sect. 5.4.

two-handed input, while Bacim et ab][use the concept of half spaces

controlled through 3D gestural input. Similarly, Ren et alijjand 3-1 SpaceCast

Burgess et al.g] use freehand gestures to control the selection. Dedipmpared to the previous techniques such as CloudLasso, an obvious
cated techniques exist also for true volumetric devi@@dnd special intention may be to constrain the selection such that only those clusters
input surfacesd]. Benko and Feinerd], in contrast, used touch input gre selected that are similar in their (projected) shape as the drawn lasso.
to cleverly position a selection sphere in space. This interaction desigdr this purpose we provide SpaceCast as the rst method in the Cast
uses a planar 2D surface as input, similar to our own approach.  family. SpaceCast's user interaction and initial form of computation
However, even such dedicated interaction designs typically requiffis resembles that of CloudLasso: the user also draws allassaind

dedicated hardware and/or many steps to achieve an effective selecfi@gnparticles to be selected. If the user-drawn input stroke is not closed
in complicated datasets such as the simulation of galaxies (d4g., [ve convert it into a closed stroke by connecting its start and end points.
43)). Therefore, structure-aware or context-aware selection techniqyeghe input stroke self-intersects we only consider its largest closed

have been devised that are able to deduce a user’s selection intenigf, starting and ending at the intersection. The lastuis de nes a
based on the underlying data and view conditions and obtain a suitalgstumF, i. e., a 3D-volume that projects to the screen ingideve

or, at least, approximate selection in the rst place. For two-dimen-

sional problems, for example, the perceptual grouping of objects was!This aspect also makes it possible to apply the techniques to volumetric
successfully used for structure-aware selectigh 15]. In three-dimen- data which samples a chosen scalar eld. This scalar eld does not have to be a
sional space, however, the situation is more complicated. Not only density, but any visually salient aspect of the data when visualized.

Selection is a fundamental component of virtually all interactive vis




3.2 TraceCast

A potential problem arises for SpaceCast in certain cases when a se-

lection in complex dataset is required: SpaceCast requires the users to

always outline the desired clusters fairly accurately and to draw closed
@ ) (or almost clos_ed) Iasso_loops_. To ease such in_teractio_n we thus present

TraceCast which, despite being only subtly different in its de nition,
can thus lead to signi cantly different interaction schemes as well as
different selected sub-spaces.

With TraceCast the user draws a lasso-like strbkaround the
particles to be selected as before. If the stroke is not closed, we close it
as described in Sect. 3.1. However, unlike SpaceCast, we do not only
consider the resulting frustuf but also take regions outsideinto
account for all subsequent operations. We rst compute an approximate
average densityr insideF, as for SpaceCast. We then choose the

Fig. 2. (a) Small cluster in front of a larger one in SpaceCast. (b) Overlap
measure mp in TraceCast. The center area represents the common
area Sy\ S that increases the measure while the two peripheral lobes
represent the symmetric difference Sa4 S_that decreases the measure.

then restrict all subsequent operations to operate ifsid&e compute
an approximate average dengity insideF as

1 N initial density threshold asg = 0:2r . Using the Marching Cubes
re= — & r(r™My; algorithm, we identify the volum¥ in the whole space where the
Fn=1 densityr is above the thresholdy. In particular, the volum& is

. o . wheref(r) 0 but for this case we de ne the functidnas
where the sum runs over the set of grid-nod@sinsideF andNg is

the number of such nodes. We then choose the initial density threshold fy=r@) ro
asrg= 0:2rg. Using the Marching Cubes algorithr3g, 55|, we
identify the volumeV (inside the frustun¥) where the density is whose thresholdg can interactively be modi ed as in SpaceCast.
above the thresholdy. More precisely, we de ne the scalar quantity ~ We then consider the disjoint volum¥s; :::; Vk that formV and
use the lasso shape to select one of these disjoint volumes. As in Space-
f(r)= min M; @ : Cast, we project the volumé, for eachk = 1;:::;K, onto an area
Sr DL S on the screen. Note that in TraceCast the voliMpean project
. . . I (completely or partly) outside the ar&athat is enclosed by the lasso-
\r’\’gﬁrﬁi(glrlzetr]etsr:g?gd?f'i\tgn dC:nf(;?enJhérh)e lag?ﬁ;;&;?gg’gf% like strokeL. We discard/ if it projects completely outsid§_ (that
; ’ S is, &\ S = 0). Otherwise, we compare the ar§ato the aree§

L thend(r) = d(r) if rsisinside L andd(r) = d(r) otherwise. To o
ensure that the physically disparate compared quantities have the Sg%%osed by the lasdoand assign it aoverlap measuren, de ned as

order of magnitude we scale distances by the lasso diaetand - - .

densities by the density standard deviatign VolumeV then results M= aredSA S)  aredSc4 )= 2aredS\ ) aredSd K);

as the set for whicli(r) 0. _ _ where4 represents the symmetric difference of two sets as shown in
In the previous step we automatically set the density threshalg.to Fig. 2(b). We thus identify the aref,, with ky 2 f 1;:::;Kg, that has

To facilitate ner control of the selection volume we pI’OVide means tfhe maximal Over|ap measu[R(M and choose the selection volume to

interactively adjust the threshold at runtime in the rafige16, 167 0]  pe the corresponding volunvg,,. Our approach for TraceCast thus

by mapping a linear paramete® [ 4;4] to the threshold value using results in selecting that subset of space generally in the area of the

r's= 2°o. Whensis adjusted, we thus recompute the scellen) |asso-like stroke that best approximates its shape.

for all grid nodes withr o replaced by s and obtain the iso-surface  Finally, we note that although TraceCast depends on the user-drawn

f(r) = O using Marching Cubes. It is important to note that we onlyasso, the latter can be much less precise than in SpaceCast. This is

need to recomputé(r) in this case because(r) andd(r) remain clearly shown in Fig. 1(b) where a galaxy is selected using a “swirling”

constant, therefore adjusting the threshold is computationally mugfioke. Using SpaceCast in the same dataset, we would need to draw a

less expensive than the previous step and can be done interactivelyasso that surrounds the target galaxy since SpaceCast does not consider

If V consists of a single connected component then we take this tod18, particle for the selection that falls outside the lasso.
the selection volume and all particles ins\dere marked as selected—

SpaceCast would then work similar to CloudLasso. In general, howevg&d PointCast

V consists of more than one disjoint volumés:::; Vic. We identify  \whjle SpaceCast and TraceCast are well-suited for larger clusters with
these volumes using the algorithm described in Sect. 3.5. often complicated structure, in practical applications we also frequently
In contrast to CloudLasso and WYSIWYG selection, however, Wesed to be able to quickly select many smaller structures—in a way like
now use the shape of the drawn lasso to select one of the disjqiging ray-pointing to select dedicated objects in a 3D scene. We thus
volumes. In particular, we project the volurvig for eachk = 1;:::;K,  gis0introduce PointCast, a technique based on the concept of treating
to an area§ on the screen. We then compare each &dathe are&®.  \ynole clusters as individual objects and using the simplest interaction
enclosed by the lasdoand identify the are&,,, with ky 2f 1;:::;Kg,  method—a single click or touch action—to mark such a cluster.
that has the maximal ovgerlap with . We then determine the selectlo_n With PointCast we thus start by projecting a ray into the dataset,
volume to bev,, except in the following case. We choose the selectiogyided by the marked point that is located on the interior of the target's
volume to bev, if there is a volumay, such thal§, > 0:85, and  projection to the screen. To be able to infer the intended selection
Vi, is closer to the eye compared\g, , for the following reason. Let yolume, we start by identifying a density threshold as follows. We rst
us suppose that the user tries to select a cligtén front of a more  sample the particie density at equally spaced points along the ray,
extended clustevg as shown in Fig. 2(a). If the user then draws §om the closest pointy to the farthest point; that still lies inside the
lassoL encirclingSa we generally geBa < §_ (becausé willnotbe  pounds of the dataset. Let
perfectly wrapped arounfly) but S = § . Choosing the area with

the largest overlap would then giWg—although the intention was r(g=r(rg+sry ro); 0 s 1
Va. If more than one volum¥, exists that satis es the condition
S > 0:85,,, we choose the one closest to the eye. represent the particle density along the ray. By samplifgy we then

We note here that if the structure of the dataset and the dengitytain the sequenag = r (5) with 5 = i=Ngfori = 0;1;:::;Ns where
threshold are such that consists of a single connected componertls + 1 is the number of sample points. We identify clusters along this
then SpaceCast and CloudLasso give the same result. Furthermoreyifby locating the intervals along the ray whei@) 0:1 maxr;g.
the density threshold is set to a very low value then SpaceCast giliéss produces a sequence of intervials [ s, ; Sy, 1, 12 = [ Sa,s S,], €tC.,
the same result as a simple cylinder-based selection. each of these intervals corresponding to a cluster.



adaptive Epanechnikov kerné(, 52]. This works as follows. First,
for each directiork = x;y; z, we de ne the smoothing length

w=2(R%Y R)=logN;
() (b) whereN is the particle count i andPJ-(Q) is coordinatek's g-th percen-
tile value. Then, we derive thglot densityr ior(r(") at noden as

15 1 o .
== = A E ket .
8pN "'y zai

Fig. 3. (a) Near-hit in PointCast. The target cluster Va is behind the
cluster Vg. The selection ray passes nearby, but outside, Vg. (b) The
graph of the density eld along the selection ray. PointCast discards rpi|0t(r(”)) =
the spurious rst increase in the density. The size of the colored areas
represent the accumulated densities s and sg.

wherer (i" s the vector withk-th component

With PointCast we usually assume that the desired selection volume rf = M=y
is the one closest to the eye, i. e., the one corresponding to the interval D e )
I,. Nevertheless, there are two cases where this may not be the cork&t K its length, ancE(x) = 1 x*for jxj 1 while E(x) = 0 for
choice. The rst case is when a very faint cluster is in front of a morl 1. The speci ¢ form of the Epanechnikov kerné&l(x), implies
prominent one; we assume that in this case the user is interested intff only particles for which the nodeis inside an ellipsoid with
prominent cluster behind. The second case is illustrated in Fig. 3. Hegemi-axesy, "y, "z centered at the particle contributertgmt(r(”)).
the ray passes close to, but not through, a clugierefore reaching  The pilot densityr piioi(r (V) at the position of thé-th particle is then
clusterVg, the latter being the desired selection as shown in Fig. 3(given by multi-linear interpolation with respect to the nearby nodes.
The Kt[h)E memt(:ﬂ Wde US?t to (I)gtaifétt:‘e dens_ityl/d e'dfﬁe EECt"t&f‘r)n For each particlé and withk = x;y;zwe then de ne the smoothing
smoothens out the density eld and hence yields a thin density () . .
around each cluster. We thus detect a small increase of the dla(ls)tya]lgngthS k. Which are unique to each particle as
along the ray nearbV, if the ray passes very close¥a as shown in
Fig. 3(b). Consequently, PointCast would pick the rst clusgralong
the ray—surprisingly for a user because this density “halo' is invisib
In order to account for these two cases we also consider the
cumulated density in each intervial In particular, we de ne the
accumulated density for the intervalas

= minf i (me pi(r ) =%, 108.g;

(Rheremis the arithmetic mean afgiot(r() over all particles in B,
&fds, is the distance between adjacent grid points inkttie direction.

Now, we can re-de ne the vectord:" as

@) _ () (M)y_~(0).
by Z rk —(I’k rk )— K -

_ o , Soy
Sk N i:aakr (s) 5 r(sds The densityr (1) at the noden is then
ich i . ined in the | my= 159 1 (i -
which is a measure of the total ‘mass' contained in the interval. We r(rtV)= 8p7N a WE krVk
then compare the accumulated densisigén the rst intervall; and b xy z

sm = max sigin the intervally with the maximal accumulated den-gjna)ly we compute the density(r) at an arbitrary position using
sity. We nally select the cluster corresponding to the rstinteriial jii-jinear interpolation with respect to the nearby nodes.
unlesss; < 0:1sy in which case we select the cluster corresponding

to intervally. For the selected intervéd we then compute the position 3.5 Identi cation of Disjoint Volumes

rsalong the ray where the maximung of r insidels is attained. A common step in the Cast methods is to identify the disjoint volumes
_ Finally, we set the den_snty thresholdrt@: 0_:2r s- Using the March-  that constitute the volume as computed by the Marching Cubes isosur-
ing Cubes algorithm we identify the volunvein the whole data space face extraction. We do this using an algorithm similar to that of Shan
where the density is above the thresholcy. As with TraceCast, we gt g1.'s 43 WYSIWYG selection. In contrast to Shan et al.'s approach,
derive the volume/ usingf(r)=r(r) ro 0. We then consider nowever, we identify disjoint volumes by rstidentifying the connected
the disjoint volumed/y; :::; Vk making upV and use the previously components of the Marching Cubes isosurface. This leads to a more
described analysis to select one of these volumes. In particular, the Rghyst detection that does not have any problems with nearby but dis-
step in the method is to select the volulgthat contains the poims  joint selection volumes that could be wrongly identi ed as part of the
identi ed earlier. ) ) _ _ same component. Speci cally, we rst use a disjoint-set data structure
The threshold o can be interactively modi ed as in the other twotg compute equivalence classes for the faces that make up the Marching
methods. This provides us with a powerful mechanism to trace c@flibe isosurface, where we consider two faces to be equivalent if they
nected structures: ag is lowered, more volumes that were previousljshare an edge. Each such equivalence class represents a connected
disjoint will merge, creating an ever-increasing connected compone@imponent of the isosurface. This task is signi cantly simpli ed by the
within the data that is seeded by the rst cluster that was identi ed. Weict that we keep track of the relations between vertexes, edges, and
show examples for this interaction strategy later in Sect. 5.3. faces of the isosurface. We rst assign an indexf 1;:::;Kgto each
equivalence class, and thus to each connected isosurface component.
We then consider the grid-node¥). To each of these grid-nodes
A common aspect of all methods in the Cast family is that they rgrat lies inside the isosurface (i. e., for whitfr (W)  0) we assign
place the particle position information by a continuous density functioihe index of the connected isosurface component using a ood- lling
We use the same continuous density, based on a standard Kernel Bgjbrithm. We start with a grid-cell that contains a face with a given
sity Estimation (KDE) technique, as done by Yu et 86][ To aid indexk. Then we nd a node in this cell that is contained within the
comprehension, we brie y summarize its construction next. KDEsosurface component with indéx We assign the indeito the found
methods obtain a smooth density function by “smearing’ each partiglede and then we proceed to neighboring nodes assigning the same
over a larger volume. We consider a rectangular Batat covers the indexk if they can be reached without crossing the isosurface. We thus
dataset (or the region of interest if the latter is restricted) and a unifofiglentify all grid-nodes with index. By repeating this process for all
grid with nodes at positions™ where the superscriptidenti es the indices, we nally mark each node with an ind&2 f 1;:::;Kg if it
node. For the estimation of the scalar density eld we use the modi diks inside the Marching Cubes isosurface. For completeness, we assign
Breiman kernel density estimation method (MBE) with a nite-supporthe indexk = 0 to nodes outside the isosurface.

3.4 Density Estimation



two simple geometric shapes: a pyramid and a torus (for explaining the
method for different selection target shapes). In the training trials, we
gave the participants as much time as they wanted, before proceeding
to the actual experiment. Training took on average 14 mins for Cy-
linderSelection, 8 mins for CloudLasso, 7 mins for SpaceCast, and 6
minutes each for TraceCast and PointCast.

i ) , ) ) We asked participants to perform their selections as quickly and accu-
Fig. 4. Four datasets: (a) multiple particle clusters, (b) semispherical shell  (ataly a5 possible but we did not tell them when they had accomplished
with half-ball inside, (c) three rings, and (d) an N-body mass simulation; 6 selection goal. For each trial-dataset combination we chose a unique
named clusters, shell, rings, and simulation in the study description. dataset starting orientation, that changed between trials but was kept

the same for different participants. We also counter-balanced the or-
4 USER STUuDY der of selection methods presented to the participants such that each

In order to understand user performance with our new selection meth@g$Sible starting-ending pair of methods was used exactly once and
in different situations we conducted a comparative quantitative udgft N0 participant saw the same progression order. To avoid measuring
study. We compared the Cast methods with the traditional selecti’ecessary time spent on navigation, we only provided trackball rota-
method based on generalized cylinders and with the structure-a . A selection was activated after participants pressed a “selection

method CloudLasso, according to time and accuracy of the selectidfton" to change to selection mode, otherwise the 2DOF input on the
data was used for rotation. We provided three possible selection modes,

4.1 Study Description corresponding to three Boolean operations: unioj {ntersection

, and subtraction (). We also provided a slider (Fig. 14) through

ich participants could adjust the automatically determined density
reshold even after rotating the view. As Yu et &6][had previously
scussed, subtraction and intersection are best done using CylinderSe-
gction and not using structure-aware techniques. We thus implemented
raction and set intersection as CylinderSelection in all trials.

Participants Twenty people (14 male, 6 female) participated in thé )
study. 15 participants were students from different disciplines al
ve non-students. Eight of them had at least a Bachelor's degré
16 participants reported prior experience with 3D computer gam
with playing games up to two times per day, with ten participan

reporting at least weekly experience. Ages ranged from 18 to 35 yegHt . .
p J Y €xp g 9 y e allowed participants to undo/redo the ve most recent operations.

M = 234;SD= 4:8). All ici ight-h . . ;

( 345 8) ) participants reported to be rl.g t-handed Once they felt that they accomplished the selection goal or that they
Apparatus The experiment was performed on a Microsoft Surfacgere not able to improve the result, they could press a nish button to
Pro 2 (1280« 800 pixels). The surface recognizes touch as well asgjyance to the next trial.

pen input. While participants had the freedom to use either direct tou

h . . . . .
or the pen as their input method, all decided to use the pen input. Be5|gn We used a repeated-measures design with the within-subject

) ] " independent variableselection techniquéCylinderSelection, Cloud-
Datasets Our study comprised four datasets, as illustrated in Fig. dasso, SpaceCast, TraceCast, and PointCastpataset(Clusters,

The datasets contained target particles (orange), interfering partioffell, Rings, Simulation). Each technique was used for each dataset in
(blue), and noise particles (light blue). These datasets were designed f@petitions. In summary, the design consisted of 20 participaBits
have different features that made selection of targets challenging: methods x 4 datasets x 3 repetitiond.200 trials in total.

Clusters: The clusters dataset in Fig. 4(a) contained 15 compact clideasures and Analysis After an inspection of timing results, we re-
ters of particles with equal uniform densities inside a low densitjioved the rst repetition of each datasetechnique combination in
noise environment. The target cluster was located in the centeratder to reduce the in uence of learning effects. This left us with 40
that no viewing direction allowed a clear view to the whole target.trials per participant (800 trials in total). Traditionally, such study data

Shell: The shell datasets in Fig. 4(b) included a half-ball of targavould have been analyzed using null-hypothesis signi cance testing
particles partially surrounded by a semispherical shell of interferiflHST). The use of NHST, however, has been increasingly criticized
particles. Both structures had the same uniform density. as atool to analyze user study experimetis 17, 18], also discussed

Rings: The rings dataset (Fig. 4(c)) contained a circular “ring' irnn the context of visualizatiorilf, 27]. Consistent with recent APA rec-
tertwined with a ~ gure-8' (a “double ring"), inside a low-density ommendationsH0], we thus report results using estimation techniques
noise environment. Each ring had the same uniform density awith effect sizes and con dence intervals rather tipavalue statistics.
participants were asked to select the circular one. In this dataseffo compare the ve techniques, we measured task completion time
the structure of the target intertwined with other structures, makiggid computed two different accuracy scores, the F1 and MCC scores,
selection challenging. similar to Yu et al.'s work $€]. Both accuracy scores are based on the

Simulation: Fig. 4(d) shows a cosmological N-Body simulationidenti cation of true positives (TP, number of correctly selected parti-
dataset with a high density core in the center and many small a¢lds), false positives (FP, number of incorrectly selected particles), and
high density clusters all around the space. Participants were requifat$e negatives (FN, number of target particles that were not selected).
to select several small clusters. This real-world dataset was cho3ée F1 score is a weighted average of precistenT P=(T P+ FP) and
to represent a realistic selection scenario in astronomy. ConsiderfegallR= TP=(TP+ FN) and is often used in information retrieval to
that the high density core is relatively easy to select with any ted@ssess query classi cation. F1 is calculatedrs= 2 (P R)=(P+ R).
nique, we chose small clusters as the target to see how our seleciibe second accuracy measure, the Matthews correlation coef cient
strategies worked when multiple selections had to be performed.(MCC), additionally uses the number of true negative particles (TN,

o non-target particles that were not selected) to calculate an accuracy

Task and Procedure Participants were always asked to select all o&core. It is commonly used in machine learning for the assessment of

ange target particles and avoid selecting interfering or noise partic{gﬁary classi ers. MCC is calculated as:

Before the actual experiment, participants practiced with three addi-

tional training datasets to get accustomed to the selection techniques. 0 TP TN FP FN .

The practice datasets were chosen to explain the differences between ~ U (TP+ FP)(TP+ EN)(TN+ FP)(TN+ FN)

techniques and the interaction with the experimental software. These

practice datasets included: 1) a simulation of two colliding galaxies (f@&oth scores normalize accuracy: for F1, 1 indicates a perfect perfor-

practicing trackball rotation), 2) ve randomly placed compact clustenmiance and O represents the worst possible result, while the correspond-

of particles with equal uniform densities inside of a low-density noiseg values for MCC are 1 and -1. For accuracy scores we computed

environment, with one being set as the target cluster (for explainingeans and 95% bootstrap con dence intervalsriall 20) [32].

how the method works and the differences compared with other meth\We analyzed completion time data using exact con dence intervals

ods), and 3) a higher-density volume of orange target particles with log-transformed data (all= 20) making outlier removal unneces-




Table 1. Mean task completion times, accuracy scores, and their 95%
con dence intervals per technique.

Technique| Time ClI | F1 CI MCC ClI

Cylinder | 88s [73,106]| .96 [.95,97] .96 [.95,.96]
CloudLasso 43s  [38,48] .96 [.96,.97] .96 [.95,.97]
SpaceCastf 23s [20,27] | .97 [.94,.97] .96 [.93,.97]  Fig. 7. Mean completion time (in seconds) across all participants for
[-

PointCast| 16s [13,19] | .97 93,.98] .97  [.93,.98]  each dataset. Error bars show 95% con dence intervals.
TraceCast| 18s [16,20] | .97 [97,98] .97 [.97,.98]

Fig. 5. Mean completion time (in seconds) across all participants for
each selection technique. Error bars show 95% con dence intervals.

Means are geometric means. Fig. 8. Preferred techniques for each of the synthetic datasets.

How often participants adjusted the slider depended on technique
and dataset. Of the Cast techniques, the slider was on average adjusted
most frequently for the PointCast technique. For all techniques most
adjustments were necessary for the simulation dataset: 3.7 for Space-
Cast, 4.5 for TraceCast, 6.25 for PointCast. All other datasets saw two
or less adjustments on average per technique.

Fig. 6. Ratios between mean completion times for the Cast selection 42 2 Analysis Per Dataset

techniques. Error bars show 95% con dence intervals. L . . . . .
Overall, participants completed all trials with similar completion times

in just under 30s on average for the three synthetic selection problems
sary {42]. For completion time, all reported means are thus geometirings, Shell, and Cluster (see Fig. 7). Trials of the simulation dataset,
means, and comparisons between means are expressed as ratios [@2the other hand, were completed in over one minute on average, so

the selection problem was more complex. Next we discuss the results
4.2 Results for the three synthetic datasets and the real-world dataset separately.

Here we report results of both the quantitative analysis as descrit®¢hthetic Datasets As can be seen in Fig. 9(a-c), the ranking of
above, the results of the post-session questionnaire, as well as atishniques according to task completion times for each of the datasets

observations from watching participants complete the study. is similar to the overall ranking result. The three Cast techniques
outperform CloudLasso and Cylinder for each of these three datasets.
4.2.1 Overall Results: Time, Accuracy, and Preference Amongst the Cast techniques, SpaceCast was generally the slowest with

taceCast and PointCast showing similar averages. Table 2 shows that

Fig. 5 shows the mean completion times and 95% con dence interv. 9 ; .
8 accuracy scores were also similarly high for each of the selection

for each technique. We can see that CylinderSelection and CloudLa blems, when examined by technique
were much slower than the three Cast techniques. CylinderSelec ' ; ) . ‘ -
was also much slower than CloudLasso, which is consistent with the n the post-session questionnaire we had asked the participants to

results of Yu et al.'s$6] experiment. Exact average task completior‘f oose the methoq they preferred for eaph dataset. PointCast was
times as well as con dence interval ranges are listed in Table 1. Givéhe Preferred technique for all datasets, with exact numbers reported

the high completion time difference for CylinderSelection, Fig. 5is le Fig. 8. Participants preferred PointCast for the clusters datasets
clear as to the difference amongst the Cast techniques. Therefore, Fause it was fast g, accurate (8), and because it was easier to
provide pairwise ratios of completion times of the Cast techniques ¥t ect occluded particles () Similar reasons were given also for
Fig. 6. Here we can see that SpaceCast took about 1.3-2.2 times |oé other datasets, with slightly different frequencies. TraceCast was

than PointCast on average and 1.1-1.8 times longer than Trace g{second most preferred technique across all datasets. Reasons for
Participants performed only about 1-1.4 times slower with TraceC&S20SINg TraceCast were that it offered a feeling of control and more

than PointCast. Thus, overall we have good evidence that both Po curacy, in particular for the Shell datgset wherg it was po;siblg for
! ptCast to select unwanted clusters given certain viewing directions.

Cast and TraceCast outperform SpaceCast, and some indication HA
PointCast may outperform TraceCast. At any rate, the differendfsbody mass simulation In this dataset we tested a multi-step se-
among Cast methods are marginal compared to the differences betwieetion process by asking participants to select several small clusters
each Cast method and CloudLasso or CylinderSelection. that were located in different places in space. Participants thus needed
At the beginning of the study (before the trials began), we had askeuirotate the whole space in order to nd the targets. This explains
participants how they would intuitively approach a selection of 3fhe increased task completion time for this dataset (see Fig. 7) when
particle data. More than 80% of participants had then reported tlwmpared to the three synthetic datasets. Interestingly the ranking of
drawing a lasso would feel most natural. In the post-session quieshniques according to task completion time changed for this dataset.
tionnaire, however, 13 participants reported to favor the point-bas€glinder was still by far the worst technique for this task. The perfor-
method PointCast. Out of the remaining participants, six preferraethnce of CloudLasso, however, was much closer to the Cast techniques
the lasso-based method TraceCast and one participant preferred biwdin for the other datasets (see Fig. 9(d)). In Fig. 10 we can see evi-
PointCast and TraceCast over the other techniques. This is interestiegce that participants performed almost equally well with CloudLasso
also in the context of the actual results. The analysis of accuracy scosesl SpaceCast as well as with PointCast. The highest ratio difference
(refer to Fig. 5 for exact numbers) for the ve techniques shows thaetween techniques was found between TraceCast and SpaceCast, with
participants were very accurate with all techniques. All F1 and MCTraceCast performing 1xlower than SpaceCast. In summary, this
scores are .96 and, therefore, close to a perfect result (1). comparison provides us with some evidence that SpaceCast performed



(a) Clusters Dataset

(b) Shell Dataset

(c) Rings Dataset

(d) Simulation Dataset

Fig. 9. Mean completion time (in seconds) across all participants for each
selection technique and each dataset. Error bars show 95% con dence
intervals. Means are geometric means.

Table 2. Mean task completion times, accuracy scores, and their 95%
con dence intervals per technique and dataset.

Technique | Time  ClI | F1 cCI MCC ClI
Clusters Dataset
Cylinder 65s [53,80] .99  [.98,.99] .99  [.98,.99]
CloudLasso| 41s [36,48] 99  [.98,.99] 99  [.98,.99]
SpaceCast| 18s [14,24] .99  [.98,.99] .99  [.98,.99]
PointCast| 10s [8.8,12] | .99 [.95,.99] 99  [.96,.99]
TraceCast| 12s [11,14] .99  [.98,1] 99  [.98,1]
Shell Dataset
Cylinder | 86s [71,105] | .97 [.97,.97] 96 [.96,.97]
CloudLasso| 46s [39,54] .95  [.92,.96] .94 [.91,.96]
SpaceCast 21s [17,25] .95 [.86,.98] 94  [.82,.97]
PointCast| 10s [8.2,13] | .97 [.93,.98] 97  [.93,.98]
TraceCast| 11s [9.6,14] .98 [.97,.98] .97  [.97,.98]
Rings Dataset
Cylinder | 66s [55,87] 96 [.96,.97] 96 [.94,.96]
CloudLasso| 35s [27,45] .98 [.97,.98] .97  [.96,.98]
SpaceCast| 16s [13,19] 98 [.97,.98] 97  [.96,.98]
PointCast| 10s [7.9,13] .97  [.91,.99] .97  [.91,.98]
TraceCast| 11s [9.7,13] | .98 [.97,.99] 98  [.96,.98]
Simulation Dataset
Cylinder | 161s [134,192]| .92 [.91,.93] 92 [.91,.93]
CloudLasso| 50s  [43,59] 94  [.93,.95] 94  [.93,.95]
SpaceCast| 49s [41,57] .94 [.93,.95] .94 [.93,.95]
PointCast| 58s [51,65] .94 [.89,.96] .95  [.90,.96]
TraceCast| 60s [51,70] 95 [.93,.96] 95  [.93,.96]

Fig. 10. Ratios between completion times for the simulation dataset.
Error bars show 95% con dence intervals.

clusters, without switching back to the rotation mdddowever, ten
participants reported that they preferred a lasso-based selection method
because the lasso gave them a better sense of control by allowing
them to enclose all wanted particles with a lasso. This was especially
true with CloudLasso, when all 3D target clusters were selected after
participants added a 2D lasso and adjusted the threshold. The remaining
participant reported that he liked all Cast methods.

5 DiscussioN

Based on these results and selection strategies, we now compare
the evaluated selection techniques. We not only discuss the relative
strengths and weaknesses of each method, but also contemplate the
users' selection strategies in different situations.

5.1 Conceptual Foundation

Our new Cast techniques are all spatial, structure-aware selection tech-
niques, a property they share with CloudLasso. However, we signif-
icantly improve upon CloudLasso as demonstrated by the user study.
The fundamentally new idea put forward by the Cast methods is that
the speci c user interactions used to make the selection already contain
rich information about a user's intention, and consequently we take
advantage of this information for the Cast techniques. Even without a
precisely draw lasso we thus enable users to obtain accurate and fast
results, based on our heuristics that guess a user's intention. Ultimately,
it is therefore the interacting user who decides which method to employ,
based on the given dataset and exploration situation.

SpaceCast is conceptually closest to CloudLasso. Nevertheless,
it improves upon it by only selecting a single component of the set
of subspaces indicated by the lasso, facilitating different selection
strategies: While CloudLasso can be used for multiple connected or
non-connected targets in one step, SpaceCast allows users to specify a
single intended target cluster though the shape of the drawn lasso.

TraceCast and PointCast deviate conceptually from SpaceCast and
CloudLasso in that they no longer restrict the domain where a selection
is made within some stroke or other input, thus no longer requiring
an actual lasso to be drawn. Moreover, and more importantly, the
conceptual basis of these two methods is that they treat clusters as
distinct objects and no longer just as an arbitrary collection of particles.
This new concept facilitates more freedom and exibility in designing
selection heuristics, either as simple click or touch operations with
PointCast or using a shape recognition approach as in TraceCast.

5.2 Selection Scenarios

To better illustrate the different characteristics of the new selection
methods we now discuss them with respect to changing selection sce-
narios: the selection of multiple clusters, the selection of a part of a
cluster, and the selection of partially or completely occluded structures.

Multiple clusters SpaceCast and TraceCast are based on a user-drawn

slightly better than the other Cast techniques, but also that participad stroke, while PointCast requires pointing at the target. Point-based
were almost equally fast with CloudLasso. Similar to the other datasdfigthods such as PointCast are usually faster for selecting single targets
however, accuracy was high for all techniques as we show in Table Pecause they do not require any drawing. The trade-off lies in the

In the post-session questionnaire, nine participants reported that tﬁ%?/umng accuracy and needed ne-tuning since the 2D stroke used in

preferred PointCast for this dataset because it helped them directly poinBThis issue is due to the interaction design with the mouse/pen-based input—
out the particle clusters as 3D objects. Some of them “complained' thet the future we envision to either provide a dedicated selection mode for such
it would have been even better if they could have continuously pické&gut modalities or to use bi-manual control for touch-based interaction.




Fig. 11. CloudLasso (a) is able to get several disconnected parts with an

interactively adjusted density threshold. PointCast (b) requires individual

operation for each cluster. Fig. 13. Hidden structures: (a) lasso drawn around the target. CloudLas-
so (b) selects two disconnected components. TraceCast (c) selects the
one whose 2D projection best matches the lasso, in this case the hidden
one (both selection results viewed from roughly the same direction).
PointCast (d) also facilitates the selection of partially hidden clusters: in
(e) the front cluster is selected if the user points to the center, in (f) the
partially hidden cluster is found if the user points to a suitable place.

Fig. 12. CloudLasso (a) and SpaceCast (b) can select part of a cluster.
TraceCast (c) and PointCast (d) treats clusters as individual objects.
The four selections in each example are made from roughly the same
viewpoint with respect to the particles.

SpaceCast and TraceCast provides more information about the likely
user intention. Theoretically, all selection methods are able to select ) ) )
multiple clusters if there is no time limitation or restrictions on th&'d: 14. Uncovering global structures in halos. (2) A small cluster is
number of Boolean operations. CloudLasso, in fact, supports selectf§iected with PointCast. (b) Lowering the threshold reveals structures
of several clusters in one step, although users typically need to adj%og{nectlng the initially selected cluster to other clusters in the dataset.
the density threshold to arrive at the desired results (Fig. 11(a)). In

the user study, however, we observed that participants tended to S&J@g{ each other. In Fig. 14(a) we show an initial selection produced
clusters one-by-one and use Boolean operations, where necessaryy igintCast using the automatically deduced density threshold, using
adj.ust their selection. Our new methods SpaceCast, TraceCast, é@émple of the Millennium-II datasetd] which represents galaxy
PointCast thus only select connected volumes and, therefore, reqyisg,s. For the depicted selection case, the dataset contains more clusters
(at least)N operations for the selection bf clusters. The PointCast {4t |ie above the density threshold but which initially are not selected
method is consequently particularly ef cient for such selections of a feyjnce they are not connected to the cluster under the clicked point. In
small cIus}ers (Fig. 11(b)), while SpaceCast and TraceCast facilitqﬁf-fg. 14(b) we show the situation when the density threshold has been
the selection of few more complex clusters. lowered. Now, elongated structures have appeared that connect the
Partial selection Both TraceCast and PointCast are based on tiseviously disjoint clusters and thus produce a single connected volume
concept of treating clusters as individual objects, and they do ribat is now selected. This property of PointCast assists users in nding
facilitate the direct selection of a subset of a cluster (although tHensity concentrations in the dataset and helps them to understand how
latter is always possible through Boolean operations). SpaceCast (jlitse are connected to each other on a more global level. The stroke
as CloudLasso), in contrast, does facilitate partial cluster selectibased methods (SpaceCast, TraceCast, and the older CloudLasso) can
(Fig. 12) since the selection is always restricted within the drawn laspsoduce similar structures, albeit with certain restrictions. Especially
SpaceCast and CloudLasso can only reveal such connecting structures
- - ! - ithin the drawn lasso. TraceCast does not share this restriction, thus
tially occluded targets (Fig. 13)—in contrast to previous structure-awafe. ,, produce results similar to PointCast. Nevertheless, changing
selection methods. The impact of this property is re ected in the resu density threshold can lead to the shape of the selection volume

of th_e post-se_ssion question_nair_e, in WhiCh our participa_nts ratedé} ni cantly diverging from the shape of the drawn lasso or stroke
studied techniques on selecting in a noisy environment with occlu ich may initially be surprising for some users

targets on a 7-point Likert scale. Cast methods were rated highly witl
an average of 6agreg, CloudLasso was rated at an average of 4.5 (be- L
tweenno opinionandsomewhat agréeand CylinderSelection received °-4 Other Applications

an average rating of 2.7 (betwedisagreeandsomewhat disagr¢eTo  The Cast methods were designed for selection in 3D particle datasets
achieve the selection of partlally occluded clusters, SpaceCaSt requifﬁgeneraL While most examp|es we show in this paper come from
users to trace the border of the target. PointCast, in contrast, only neggﬁonomy, our methods can also be applied for selection in 3D particle
a small part of the target to not be occluded in order to facilitate pickingatasets of different origin. Such datasets do not even need to have a
it out from other clusters. TraceCast, nally, was regarded as the megatial character but they could be based on other properties that can
effective method with respect to this point by the study participanise mapped to 3D space. Such a representation can be generated from
The reason was that, with TraceCast, the right cluster would be selecieghulti-dimensional dataset by either choosing exactly three of these
as long as its shape was closer to the input lasso than compared to #iiensions or by rst performing a Principal Component Analysis and

of other clusters—even if the target cluster was completely occludedglecting the rst three components. To show a practical example we

. present a subset of the Hurricane Isabel datadedtig. 15(a). We used

5.3 Uncovering Global Structures the properties pressure, water vapor, andnd component and show

The selection volume created by PointCast selection depends to a lasgrections with different Cast methods in Fig. 15(b)—(d).

degree on the choice of the chosen density threshold, and at the same

time is in no way restricted by a lasso. This property allows us to use 3See http://vis.computer.org/vis2004contest/data.html or
PointCast to analyze how different parts of the dataset are connediept//www.vets.ucar.edu/vg/isabeldata/readme.html for details.




gestures. Furthermore, our study showed that our new techniques are
ef cient as they allow users to arrive at selections faster than with other
structure-aware techniques, without jeopardizing their accuracy.
Ultimately, our paper contributes to the development of exible inter-
action environments for the exploration of complex data visualizations
[29]. As selection is needed in virtually any exploratory data analysis,
(@) (b) our new Cast family of techniques—together with the older CloudLasso
and Boolean operations—provides a powerful toolkit that can support
many different selection tasks and datasets in visualization. While we
did not speci cally design the techniques for any particular type of
input device, SpaceCast, TraceCast, and PointCast are suitable not only
for mouse and pen-based input but also for newer input and interaction
paradigms [30] such as those based on touch (e.g., [11, 25, 26, 57]).
(©) (d)
Fig. 15. Cast selection in a 3D scatter plot of an abstract dataset: (a)
Pressure, water vapor, and x wind component from the Hurricane Isabel ~ From the University of Groningen, we thank Amina Helmi for the
dataset. (b) SpaceCast, (c) TraceCast, and (d) PointCast selection. Aquarius Project44] simulation data, Frans van Hoesel for the galaxy
collision simulation (orig. from galaxydynamics.org), and Michael
5.5 Limitations and Further Improvements Wilkinson for his DATAPLOT b2] density estimation code. The Hurri-

) cane Isabel dataset was produced by the Weather Research and Forecast
The main limitation of the Cast selection methods is their dependencg@fRF) model, courtesy of NCAR and the NSF. Finally, we used a sam-
an appropriate automatically determined density threshold. In datasgits of the Millennium-Il dataset [45] for some of our examples.
with steep density gradients it is a dif cult problem to determine an ap-
propriate initial value of the density threshold, and a manual adjustmgRgFerReNCES
gg}ﬂgtm;ensthiglglgin;n;gm;ﬁéggosflgfc H?: .ol':lheevr(\e/\ziﬂsqslgf;igsﬁt(i?onrx:r l D. Akers. CINCH: A cooperatively designed marking interface for 3D
. . . . pathway selection. IRroc. UIST pp. 33-42. ACM, New York, 2006. doi
interaction used by the Cast methods. Furthermore, density gradients 3 11451166253 1166260
are ty_plcally less steep at the edge of a cluster. This means that if F. Argelaguet and C. Andujar. Ef cient 3D pointing selection in cluttered
selectl_on volume already rough_ly matches the cluster boundary, and t_ virtual environmentslEEE Computer Graphics and Applicatiqr29:34—
user tries to ne-tune the selection, then a small decrease of the density 43 Nov./Dec. 2009. d2i10.1109/MCG.2009.117
threshold produces a large increase of the selection volume. In the usgf F. Argelaguet and C. Andujar. A survey of 3D object selection techniques
study, however, we have not found this problem to affect the results. ~ for virtual environmentsComputers & Graphics37(3):121-136, May

Nevertheless, the occasional need to manually adjust the density 2013. dob 10.1016/j.cag.2012.12.003
threshold led some user study participants to remark that the TraceC#4t F. Bacim, R. Kopper, and D. A. Bowman. Design and evaluation of
and PointCast methods are not as accurate as SpaceCast—in the latter3D selection techniques based on progressive re nenetgrnational
the selection is always bound by the lasso. One way of improving this Journal of Human-Computer Studjé&l(7-8):785-802, July/Aug. 2013.
manual threshold setting would be by using a mapping from the slider ~doi>10.1016/}.jhcs.2013.03.003
position to the threshold value so that small movements of the slidé] F. Bacim, M. Nabiyouni, and D. A. Bowman. Slice-n-Swipe: A free-hand
produce correspondingly small changes of the selection volume. A gesture user interface for 3D point cloud annotationPiiec. 3DUI, pp.
very different approach would be to not use the density threshold for 185-186. IEEE Computer Society, Los Alamitos, 2014>d@1.1109/3DUI.
determining the cluster boundary but to use other edge-detection algo- 2014.6798882 _ _
rithms originating in the image recognition domain or using topological® F- Bacim, M. Sinclair, and H. Benko. Understanding touch selection
analysis to determine an appropriate density isosurface [21]. accuracy on at and hemispherical deformable surfaceBréi. Graphics
We note here that the Cast methods have been designed for s,elec-lc)n:\lerfg:e pp. 197-204. Canadian Information Processing Society, Toronto,
—_ . : A~ . - , Canada, 2013.
tion in particle datasets with distinct clusters. Particle datasets wit

diff t struct h teristi d d diff t heuristics f ] A. Banic. Selection classi cation for interaction with immersive volu-
imerent structure characteristics may aemand difierent NeUnNsUCS 101", ayic visyalizations. IHuman Interface and the Management of In-
determining an appropriate selection volume.

f ; . . . formation: Information and Knowledge Design and Evaluatiesiume
Finally, in the future we want to combine different selection tech-  g5>1 of NCS pp. 10-21. Springer, Cham/Heidelberg, 2014 >di.

niques in an integrated visualization and data analysis environment and 1007/978-3-319-07731-4 2

perform user studies with real-world scenarios to validate the result§] H. Benko and S. Eeiner. Balloon Selection: A multi- nger technique
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