

A variant of Niessen's problem on degree sequences of graphs

Jiyun Guo, Jianhua Yin

▶ To cite this version:

Jiyun Guo, Jianhua Yin. A variant of Niessen's problem on degree sequences of graphs. Discrete Mathematics and Theoretical Computer Science, 2014, Vol. 16 no. 1 (1), pp.287–292. 10.46298/dmtcs.1260. hal-01179211

HAL Id: hal-01179211 https://inria.hal.science/hal-01179211

Submitted on 22 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A variant of Niessen's problem on degree sequences of graphs

Ji-Yun Guo* and Jian-Hua Yin[†]

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou, P.R. China

received 21st July 2013, revised 25th Jan. 2014, 19th Mar. 2014, 11th Apr. 2014, accepted 21st Apr. 2014.

Let (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) be two sequences of nonnegative integers satisfying the condition that $b_1 \ge b_2 \ge \cdots \ge b_n$, $a_i \le b_i$ for $i = 1, 2, \dots, n$ and $a_i + b_i \ge a_{i+1} + b_{i+1}$ for $i = 1, 2, \dots, n-1$. In this paper, we give two different conditions, one of which is sufficient and the other one necessary, for the sequences (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) such that for every (c_1, c_2, \ldots, c_n) with $a_i \leq c_i \leq b_i$ for $i = 1, 2, \ldots, n$ and $\sum_{i=1}^{n} c_i \equiv 0 \pmod{2}$, there exists a simple graph G with vertices v_1, v_2, \ldots, v_n such that $d_G(v_i) = c_i$ for $i = 1, 2, \dots, n$. This is a variant of Niessen's problem on degree sequences of graphs (Discrete Math., 191 (1998), 247-253).

Keywords: graph; degree sequence; Niessen's problem

1 Introduction

A sequence $\pi = (d_1, d_2, \dots, d_n)$ of nonnegative integers is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a *realization* of π . The following wellknown theorem due to Erdős and Gallai [2] gives a characterization of π that is graphic.

Theorem 1.1 (Erdős and Gallai [2]) Let $\pi = (d_1, d_2, \ldots, d_n)$ be a sequence of nonnegative integers with $d_1 \ge d_2 \ge \cdots \ge d_n$ and $\sum_{i=1}^n d_i \equiv 0 \pmod{2}$. Then π is graphic if and only if for $t = 0, 1, \ldots, n$, we have

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}.$$
(1)

Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative integers with $a_i \leq b_i$ for $i = 1, 2, \ldots, n$. Motivated by Theorem 1.1, Niessen [4] posed the following problem.

^{*}Email: 158238102@qq.com.

[†]Corresponding author. Email: yinjh@ustc.edu.

^{1365-8050 (}c) 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Problem 1.1 (Niessen [4, Problem 297]) *Give a simple characterization of the sequences* $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ (like Theorem 1.1) such that there exists $(c_1, c_2, ..., c_n)$ with $a_i \leq c_i \leq b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ so that $(c_1, c_2, ..., c_n)$ is graphic.

Motivated by Problem 1.1, we now propose the following problem.

Problem 1.2 Give a simple characterization of the sequences $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ such that every $(c_1, c_2, ..., c_n)$ with $a_i \le c_i \le b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ is graphic. Cai et al. [1] gave a solution to Problem 1.1. They defined for t = 0, 1, ..., n

$$J_t = \{i | i \ge t+1 \text{ and } b_i \ge t+1\}$$

and

$$\varepsilon(t) = \begin{cases} 1 & \text{if } a_i = b_i \text{ for all } i \in J_t \text{ and } \sum_{i \in J_t} b_i + t|J_t| \equiv 1 \pmod{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1.2 (Cai et al. [1]) Let $A_n = (a_1, a_2, ..., a_n)$ and $B_n = (b_1, b_2, ..., b_n)$ be two sequences of nonnegative integers satisfying the condition that $a_1 \ge a_2 \ge ... \ge a_n$, $a_i \le b_i$ for i = 1, 2, ..., nand $a_i = a_{i+1}$ implies that $b_i \ge b_{i+1}$ for i = 1, 2, ..., n - 1. Then there exists $(c_1, c_2, ..., c_n)$ with $a_i \le c_i \le b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ so that $(c_1, c_2, ..., c_n)$ is graphic if and only if for t = 0, 1, ..., n, we have

$$\sum_{i=1}^{t} a_i \le t(t-1) + \sum_{i=t+1}^{n} \min\{t, b_i\} - \varepsilon(t).$$
(2)

Cai et al. [1] also showed that Theorem 1.2 reduces to Theorem 1.1 when $a_i = b_i = d_i$ for i = 1, 2, ..., n. The purpose of this paper is to give a necessary condition and a sufficient condition (with bounds differing by at most one) on the sequences $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ such that every $(c_1, c_2, ..., c_n)$ with $a_i \le c_i \le b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ is graphic. This is a partial solution to Problem 1.2. They are Theorem 1.3 and Theorem 1.4 below. We define for t = 0, 1, ..., n

$$\xi(t) = \begin{cases} 1 & \text{if } a_i < b_i \text{ for some } i \in J_t \text{ or } \sum_{i \in J_t} b_i + t |J_t| \equiv 1 \pmod{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1.3 Let $A_n = (a_1, a_2, ..., a_n)$ and $B_n = (b_1, b_2, ..., b_n)$ be two sequences of nonnegative integers satisfying the condition that $b_1 \ge b_2 \ge ... \ge b_n$, $a_i \le b_i$ for i = 1, 2, ..., n and $a_i + b_i \ge a_{i+1} + b_{i+1}$ for i = 1, 2, ..., n - 1. If every $(c_1, c_2, ..., c_n)$ with $a_i \le c_i \le b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ is graphic, then for t = 0, 1, ..., n, we have

$$\sum_{i=1}^{t} b_i \leq \begin{cases} t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) + 2 & \text{if } a_i < b_i \text{ for some } i, \\ t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) & \text{if } a_i = b_i \text{ for each } i. \end{cases}$$
(3)

288

Theorem 1.4 Let $A_n = (a_1, a_2, \ldots, a_n)$ and $B_n = (b_1, b_2, \ldots, b_n)$ be two sequences of nonnegative integers satisfying the condition that $b_1 \ge b_2 \ge \cdots \ge b_n$, $a_i \le b_i$ for $i = 1, 2, \ldots, n$ and $a_i + b_i \ge a_{i+1} + b_{i+1}$ for $i = 1, 2, \ldots, n-1$. If for $t = 0, 1, \ldots, n$, we have

$$\sum_{i=1}^{t} b_i \leq \begin{cases} t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) + 1 & \text{if } a_i < b_i \text{ for some } i, \\ t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) & \text{if } a_i = b_i \text{ for each } i, \end{cases}$$
(4)

then every (c_1, c_2, \ldots, c_n) with $a_i \leq c_i \leq b_i$ for $i = 1, 2, \ldots, n$ and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ is graphic.

The condition (3) of Theorem 1.3 is not sufficient, as can be seen by taking $A_5 = (4, 3, 2, 1, 1)$ and $B_5 = (4, 3, 3, 2, 2)$, which satisfy $b_1 \ge b_2 \ge b_3 \ge b_4 \ge b_5$, $a_i \le b_i$ for i = 1, 2, 3, 4, 5 and $a_i + b_i \ge a_{i+1} + b_{i+1}$ for i = 1, 2, 3, 4. It is easy to check that (3) holds for t = 0, 1, 2, 3, 4, 5. However, $(c_1, c_2, c_3, c_4, c_5) = (4, 3, 3, 1, 1)$ with $\sum_{i=1}^{5} c_i = 12$ and $a_i \le c_i \le b_i$ for i = 1, 2, 3, 4, 5 is not graphic.

 $(c_1, c_2, c_3, c_4, c_5) = (4, 3, 3, 1, 1)$ with $\sum_{i=1}^5 c_i = 12$ and $a_i \le c_i \le b_i$ for i = 1, 2, 3, 4, 5 is not graphic. The condition (4) of Theorem 1.4 is not necessary: take $A_5 = (4, 3, 1, 2, 1)$ and $B_5 = (4, 3, 3, 2, 2)$, which satisfy $b_1 \ge b_2 \ge b_3 \ge b_4 \ge b_5$, $a_i \le b_i$ for i = 1, 2, 3, 4, 5 and $a_i + b_i \ge a_{i+1} + b_{i+1}$ for i = 1, 2, 3, 4. It is easy to see that every $(c_1, c_2, c_3, c_4, c_5)$ with $a_i \le c_i \le b_i$ for i = 1, 2, 3, 4, 5 and $\sum_{i=1}^5 c_i \equiv 0 \pmod{2}$ is graphic. However, (4) does not hold for t = 2.

Theorems 1.3 and 1.4 show that the left hand sides of (3) and (4) are equal and the right hand sides of (3) and (4) with bounds differing by one if $a_i < b_i$ for some *i* and they coincide if $a_i = b_i$ for each *i*. For $a_i = b_i = d_i$ for i = 1, ..., n, it is easy to get that $\xi(t) = \varepsilon(t)$ for t = 0, 1, ..., n. Thus, (3) and (4) imply that

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\} - \varepsilon(t) \text{ for } t = 0, 1, \dots, n,$$

that is (2) for t = 0, 1, ..., n. Therefore, Theorems 1.3 and 1.4 reduce to Theorem 1.1 when $a_i = b_i = d_i$ for i = 1, 2, ..., n.

2 Proofs of Theorem 1.3–1.4

Proof of Theorem 1.3. If $a_i = b_i$ for i = 1, 2, ..., n and $\sum_{i=1}^n a_i \equiv 0 \pmod{2}$, then $(a_1, a_2, ..., a_n)$ is graphic and $\sum_{i=1}^t a_i \leq t(t-1) + \sum_{i=t+1}^n \min\{t, a_i\}$ for t = 0, 1, ..., n by Theorem 1.1. Since $\xi(t) = \varepsilon(t) = 0$ for t = 0, 1, ..., n (see [1]), we have that

$$\sum_{i=1}^{t} a_i \le t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) \text{ for } t = 0, 1, \dots, n$$

If there is an j so that $a_j < b_j$, we let $C_n = (c_1, \ldots, c_n) = (b_1, \ldots, b_t, a_{t+1}, \ldots, a_n)$, where $0 \le t \le n$. If $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$, then C_n is graphic and $\sum_{i=1}^t b_i \le t(t-1) + \sum_{i=t+1}^n \min\{t, a_i\}$. It follows from

$$\begin{split} \xi(t) &\leq 1 \text{ that } \sum_{i=1}^{t} b_i \leq t(t-1) + \sum_{i=t+1}^{n} \min\{t, a_i\} - \xi(t) + 2. \text{ Assume that } \sum_{i=1}^{n} c_i \equiv 1 \pmod{2}. \text{ We now consider two cases according to whether } 1 \leq j \leq t \text{ or } t+1 \leq j \leq n. \\ \text{ If } 1 \leq j \leq t, \text{ we let } c_j^* = b_j - 1, c_i^* = b_i \text{ for all } i \in \{1, \dots, t\} \setminus \{j\} \text{ and } c_i^* = a_i \text{ for all } i \geq t+1, \text{ then } t \geq t+1 \text{ or } t \leq t \leq t \text{ or } t \leq t \leq t \text{ or } t + 1 \leq t \leq t \text{ or } t + 1 \text{ or } t \leq t \text{ or } t + 1 \text{ or } t \leq t \text{ or } t + 1 \text{ or } t > t \text{ or } t = t \text{ or } t + 1 \text{ or } t = t \text{ or } t \text{ or } t = t \text{ or } t \text{ or } t = t \text{ or } t \text{ or } t = t \text{ or } t \text{ or } t \text{ or } t \text{ or } t = t \text{ or } t \text{ or }$$

If $1 \le j \le t$, we let $c_j^* = b_j - 1$, $c_i^* = b_i$ for all $i \in \{1, ..., t\} \setminus \{j\}$ and $c_i^* = a_i$ for all $i \ge t + 1$, then $\sum_{i=1}^n c_i^* \equiv 0 \pmod{2}$, and hence $C_n^* = (c_1^*, ..., c_n^*)$ is graphic. Thus $\sum_{i=1}^t b_i - 1 \le t(t-1) + \sum_{i=t+1}^n \min\{t, a_i\}$, implying that $\sum_{i=1}^t b_i \le t(t-1) + \sum_{i=t+1}^n \min\{t, a_i\} - \xi(t) + 2$. If $t+1 \le j \le n$, let $c_j^* = a_j + 1$, $c_i^* = b_i$ for all $1 \le i \le t$ and $c_i^* = a_i$ for all $i \in \{t+1, ..., n\} \setminus \{j\}$, then $\sum_{i=1}^n c_i^* \equiv 0 \pmod{2}$, and hence $C_n^* = (c_1^*, ..., c_n^*)$ is graphic. Thus

$$\sum_{i=1}^{t} b_i \leq t(t-1) + \sum_{\substack{i=t+1\\i\neq j\\n}}^{n} \min\{t, a_i\} + \min\{t, a_j+1\}$$

$$\leq t(t-1) + \sum_{\substack{i=t+1\\n}}^{n} \min\{t, a_i\} + 1$$

$$\leq t(t-1) + \sum_{\substack{i=t+1\\i=t+1}}^{n} \min\{t, a_i\} - \xi(t) + 2.$$

The proof of Theorem 1.3 is completed.

The proof of Theorem 1.4 depends on a factor theorem due to Niessen [3]. Let G be a simple graph and let $g, f : V \to Z^+$ such that $g(v) \leq f(v)$ for all $v \in V$, where V = V(G) is the vertex set of G and Z^+ denotes the nonnegative integers. An (g, f)-factor of G is a spanning subgraph F such that $g(v) \leq d_F(v) \leq f(v)$ for all $v \in V$. An (f, f)-factor is called an f-factor. If there exists a function $h : V \to Z^+$ with $g(v) \leq h(v) \leq f(v)$ for all $v \in V$ and $\sum_{v \in V} h(v) \equiv 0 \pmod{2}$, then G is said to have all (g, f)-factors if and only if G has an h-factor for every h described above. Let $U, W \subseteq V$ be disjoint

sets and $e_G(U, W)$ denote the number of edges of G joining U to W.

Theorem 2.1 (Niessen [3]) G has all (g, f)-factors if and only if

$$\sum_{v \in S} g(v) - \sum_{v \in T} f(v) + \sum_{v \in T} d_{G \setminus S}(v) - \omega(S, T) \ge \begin{cases} -1 & \text{if } g < f \text{ for some } v \\ 0 & \text{if } g = f \text{ for each } v \end{cases}$$

for all disjoint sets $S, T \subseteq V$, where $\omega(S, T)$ denotes the number of components C of $G - (S \cup T)$ such that there exists $v \in V(C)$ with g(v) < f(v) or $\sum_{v \in V(C)} f(v) + e_G(V(C), T) \equiv 1 \pmod{2}$.

Proof of Theorem 1.4. By Theorem 2.1, we take $G = K_n$ (the complete graph on *n* vertices), where $V(K_n) = \{v_1, \ldots, v_n\}$. Let $g(v_i) = a_i$ and $f(v_i) = b_i$ for $i = 1, 2, \ldots, n$. It is easy to see that G has all (g, f)-factors if and only if every (c_1, c_2, \ldots, c_n) with $a_i \le c_i \le b_i$ for $i = 1, 2, \ldots, n$ and $\sum_{i=1}^n c_i \equiv 0 \pmod{2}$ is graphic. Therefore, we only need to verify that

$$\Delta(S,T) := \sum_{v_i \in S} a_i - \sum_{v_i \in T} b_i + t(n-1-s) - \omega(S,T) \ge \begin{cases} -1 & \text{if } a_i < b_i \text{ for some } i \\ 0 & \text{if } a_i = b_i \text{ for each } i \end{cases}$$

290

for any two disjoint subsets S and T of $V(K_n)$, where s = |S| and t = |T|. Set $R = V(K_n) \setminus (S \cup T)$ and r = |R|, then we can get that

$$\omega(S,T) = \left\{ \begin{array}{ll} 1 & \text{ if } a_i < b_i \text{ for some } v_i \in R \text{ or } \sum\limits_{v_i \in R} b_i + rt \equiv 1 \ (\text{mod } 2), \\ 0 & \text{ otherwise.} \end{array} \right.$$

Let S and T be two disjoint subsets of $V(K_n)$ satisfying

(a) $\Delta(S,T)$ is minimized;

(b) subject to (a), |S| + |T| is minimized;

(c) subject to (a) and (b), $|T \cap \{v_1, \dots, v_t\}|$ is maximized, where t = |T|.

Now we claim that $T = \{v_1, v_2, \dots, v_t\}$. To justify it, assume the contrary: $v_i \notin T$ and $v_j \in T$ for some *i* and *j* with $i \leq t < j$. We consider two cases according to whether $v_i \in R$ or $v_i \in S$. **Case 1.** $v_i \in R$.

Set $T' = (T \cup \{v_i\}) \setminus \{v_j\}$. Then $R' = (R \cup \{v_j\}) \setminus \{v_i\}$. It follows from (c) that $\Delta(S, T') - \Delta(S, T) \ge 1$. 1. So $b_j - b_i + \omega(S, T) - \omega(S, T') \ge 1$. Since $b_i \ge b_j$, we have that $b_i = b_j$, $\omega(S, T) = 1$ and $\omega(S, T') = 0$.

If $a_j < b_j$, then $\omega(S, T') = 1$, a contradiction. If $a_i < b_i$ and $a_j = b_j$, then $a_i < a_j$, and hence $a_i + b_i < a_j + b_j$, which is impossible. If $a_i = b_i$ and $a_j = b_j$, then $\omega(S, T) = \omega(S, T')$, a contradiction. **Case 2.** $v_i \in S$.

Set $S^* = (S \cup \{v_j\}) \setminus \{v_i\}$ and $T^* = (T \cup \{v_i\}) \setminus \{v_j\}$. By (c), we have that $\Delta(S^*, T^*) - \Delta(S, T) \ge 1$, i.e., $a_j - b_i + b_j - a_i \ge 1$, implying that $a_i + b_i < a_j + b_j$, which is impossible.

Therefore, we conclude that $T = \{v_1, v_2, \dots, v_t\}$, as claimed. Thus, we obtain that

$$\begin{aligned} \Delta(S,T) &= \sum_{v_i \in S} a_i - \sum_{i=1}^t b_i + t(n-1-s) - \omega(S,T) \\ &= -\sum_{i=1}^t b_i + t(t-1) + \sum_{i=t+1}^n \min\{t, a_i\} - \omega(S,T) \\ &+ \sum_{v_i \in S} (a_i - \min\{t, a_i\}) + \sum_{v_i \in R} (t - \min\{t, a_i\}) \end{aligned}$$

If $a_k = b_k$ for each k, then by (4) we have that

$$\Delta(S,T) \ge \xi(t) - \omega(S,T) + \sum_{v_i \in S} (a_i - \min\{t, a_i\}) + \sum_{v_i \in R} (t - \min\{t, a_i\}).$$

In this case, if $a_i > t$ for some $v_i \in S$ or $a_i < t$ for some $v_i \in R$ or $\xi(t) = 1$, then $\Delta(S,T) \ge 0$. If $a_i \le t$ for all $v_i \in S$, $a_i \ge t$ for all $v_i \in R$ and $\xi(t) = 0$, then $\{v_i | i \in J_t\} \subseteq R$, $a_i = t$ for all $v_i \in R \setminus \{v_i | i \in J_t\}$ and $\sum_{i \in J_t} b_i + t | J_t | \equiv 0 \pmod{2}$, implying that

$$\begin{split} \sum_{v_i \in R} b_i + rt &= \sum_{i \in J_t} b_i + \sum_{v_i \in R \setminus \{v_i | i \in J_t\}} b_i + rt \\ &= \sum_{i \in J_t} b_i + t | R \setminus \{v_i | i \in J_t\} | + rt \\ &\equiv \sum_{i \in J_t} b_i + t | J_t | \pmod{2} \\ &\equiv 0 \pmod{2}. \end{split}$$

Thus, $\omega(S,T) = 0$ and $\Delta(S,T) \ge 0$.

If $a_k < b_k$ for some k, then by (4) we have that

$$\Delta(S,T) \ge \xi(t) - 1 - \omega(S,T) + \sum_{v_i \in S} (a_i - \min\{t, a_i\}) + \sum_{v_i \in R} (t - \min\{t, a_i\}).$$

In this case, if $a_i > t$ for some $v_i \in S$ or $a_i < t$ for some $v_i \in R$ or $\xi(t) = 1$, then $\Delta(S,T) \ge -1$. If $a_i \le t$ for all $v_i \in S$, $a_i \ge t$ for all $v_i \in R$ and $\xi(t) = 0$, then $a_i = b_i$ for all $i \in J_t$, $\{v_i | i \in J_t\} \subseteq R$, $a_i = b_i = t$ for all $v_i \in R \setminus \{v_i | i \in J_t\}$ and $\sum_{i \in J_t} b_i + t |J_t| \equiv 0 \pmod{2}$, implying that $a_i = b_i$ for all $v_i \in R$ and $\sum_{v_i \in R} b_i + rt \equiv \sum_{i \in J_t} b_i + t |J_t| \pmod{2} \equiv 0 \pmod{2}$. Thus, $\omega(S,T) = 0$ and $\Delta(S,T) \ge -1$. The proof of Theorem 1.4 is completed.

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11161016) and NSF of Hainan Province of China (No. 112004). We also thank the referees for their helpful suggestions and comments.

References

- M.C. Cai, X.T. Deng and W.A. Zang. Solution to a problem on degree sequences of graphs. *Discrete Math.*, 219: 253–257, 2000.
- [2] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices (Hungarian). *Mat. Lapok*, 11: 264–274, 1960.
- [3] T. Niessen. A characterization of graphs having all (g, f)-factors. J. Combin. Theory Ser.B, 72: 152–156, 1998.
- [4] T. Niessen. Research problems. *Discrete Math.*, 191: 247–253, 1998.

292