D. Barth, O. Baudon, and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Applied Mathematics, vol.119, issue.3, pp.205-216, 2002.
DOI : 10.1016/S0166-218X(00)00322-X

URL : https://hal.archives-ouvertes.fr/hal-00307866

D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Mathematics, vol.306, issue.5, pp.469-477, 2006.
DOI : 10.1016/j.disc.2006.01.006

URL : https://hal.archives-ouvertes.fr/hal-00141015

D. Barth, H. Fournier, and R. Ravaux, On the shape of decomposable trees, Discrete Mathematics, vol.309, issue.12, pp.3882-3887, 2009.
DOI : 10.1016/j.disc.2008.11.012

O. Baudon, J. Bensmail, J. Przyby?o, and M. Wo´zniakwo´zniak, Partitioning powers of traceable or hamiltonian graphs, Theoretical Computer Science, vol.520
DOI : 10.1016/j.tcs.2013.10.016

URL : https://hal.archives-ouvertes.fr/hal-00919048

O. Baudon, J. Przyby?o, and M. Wo´zniakwo´zniak, On minimal arbitrarily partitionable graphs, Information Processing Letters, vol.112, issue.17-18, pp.697-700, 2012.
DOI : 10.1016/j.ipl.2012.06.010

URL : https://hal.archives-ouvertes.fr/hal-00712852

H. J. Broersma, D. Kratsch, and G. J. Woeginger, Fully decomposable split graphs, Lecture Notes in Computer Science, vol.5874, pp.4105-112, 2009.
DOI : 10.1007/978-3-642-10217-2_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Gy?-ori, On division of graphs to connected subgraphs, Proc. Fifth Hungarian Colloq, pp.485-494, 1976.

M. Hor?ák, A. Marczyk, I. Schiermeyer, and M. Wo´zniakwo´zniak, Dense arbitrarily vertex decomposable graphs, Graphs and Combin, pp.807-821, 2012.

M. Hor?ák, . Zs, M. Tuza, and . Wo´zniakwo´zniak, On-line arbitrarily vertex decomposable trees, Discrete Applied Mathematics, vol.155, issue.11, pp.1420-1429, 2007.
DOI : 10.1016/j.dam.2007.02.011

M. Hor?ák and M. Wo´zniakwo´zniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Mathematica, vol.23, pp.49-62, 2003.

R. Kalinowski, M. Pil´sniakpil´sniak, M. Wo´zniakwo´zniak, and I. A. Zio?o, Arbitrarily vertex decomposable suns with few rays, Discrete Math, pp.3726-3732, 2009.

R. Kalinowski, M. Pil´sniakpil´sniak, M. Wo´zniakwo´zniak, and I. A. Zio?o, On-line arbitrarily vertex decomposable suns, Discrete Math, pp.6328-6336, 2009.

L. Lovász, A homology theory for spanning tress of a graph, Acta Mathematica Academiae Scientiarum Hungaricae, vol.30, issue.3-4, pp.241-251, 1977.
DOI : 10.1007/BF01896190

A. Marczyk, A note on arbitrarily vertex decomposable graphs, Opuscula Mathematica, vol.26, pp.109-118, 2006.

A. Marczyk, An ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math, pp.3588-3594, 2009.