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The problem of finding a spanning tree in an undirected graiph amaximum number of leaves is known to be
N’P-hard. We present an algorithm which finds a spanning trefe atiteastt leaves in timeD* (3.4575") which
improves the currently best algorithm. The estimation efrilmning time is done by using a non-standard measure.
The present paper is one of the still few examples that enthlyeasure & Conquer paradigm of algorithm analysis
in the area of Parameterized Algorithmics.
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1 Introduction

In this paper, we address the following combinatorial peabin graphs:

k-LEAF SPANNING TREE
Given: An undirected grapl(V, E), and the parametéyr.
Weask: Is there a spanning tree f6r with at least: leaves?

This problem has found notable applications, for instandbé design of ad-hoc sensor networks [8, 34],
in network design (see, e.g., [28]) and in computationaldgy (refer to [27]). According to [23], our
problem is also known as the traveling tourist problem, asdtels finding the shortest walk that leads
to all attractions (modeled itself by a network) or allowdeatst to look at them (when only visiting the
neighborhood of the attraction).

In a spanning tree witlt leaves the non-leaf vertices form a connected dominatihgve n — k
vertices in any graph on vertices. The corresponding graph parameter, giving thedlest number of
vertices forming a connected dominating set in a graph, mtasduced in [30]. Hence, finding a spanning
tree with a maximum number of leaves is equivalent to findimgirimum connected dominating set. In
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particular in application areas, the problem we deal witheisce also known as MiIMuM CONNECTED
DOMINATING SET. The computational difficulty (i.e., NP-completeness) of problem has long been
established; we refer to [14] for a discussion of such tygessults. However, it should be noticed that
with respect to parameterized complexity theory (the faifuke present paper), the two problem variants
(i.e., MINIMUM CONNECTED DOMINATING SET versus MAXIMUM LEAF SPANNING TREE) turn out

to have a completely different flavor. The same comment apjpti approximability (as discussed in the
next paragraph).

Generally speaking, while MxiMuM LEAF SPANNING TREE can be approximated up to a constant
factor, this is not to be expected foriMMuM CONNECTED DOMINATING SET. The MAXIMUM LEAF
SPANNING TREE problem already has been widely studied with regard to ifg@pmability. R. Solis-
Oba [33] obtained a 2-approximation running in polynomiale. H.-l. Lu and R. Ravi [26] provided a
3-approximation that runs in almost linear time. P. S. Bomsnd F. Zickfeld [10] could show that the
problem is%—approximable when the input is restricted to cubic grasprisingly, similar results were
actually achieved also for the corresponding problem oactird graphs; we refer to N. Schwartges [31]
and also to the conference paper [32] for a discussion ofdla¢ed findings. Conversely, for MiMUM
CONNECTEDDOMINATING SET, the best known approximation algorithms only reach an@ygpration
factor of H(A(G)) + 2, whereA(G) is the maximum degree of graghandH is the harmonic function;
see [23]. That paper also proves that it is hard to improvefiproximation guarantee &f (A) for any
graph (reasoning about asymptotically large order and mawxi degree), unless some inclusions between
complexity classes hold that are considered to be unlikely.

runningtime  0*(9.49%)  ©O*(8.12%) ©O*(6.75%) ©O*(4*) ©0*(3.72%) ©0*(3.4575%)
klam value 20 22 24 33 35 37

Tab. 1. klam values for different record-claiming algorihms fopgucing leafy trees in undirected graphs.

Concerning parameterized algorithms for our problem gtfieea sequence of papers culminating in the
one of J. Kneis, A. Langer and P. Rossmanith [24]. This fasityple branching algorithm achieves a
running time ofO* (4%). Prior to this, already several papers have been publishédi® parameterized
problem, with running times ad*(9.49%) (by P. S. Bonsmat al.[9]), of O*(8.12*%) (by V. Estivill-Castro
etal.[16]) and ofO* (6.75%) (by P. S. Bonsma and F. Zickfeld [11]). All these bounds haenobtained
by using combinatorial arguments. The best kernelizagsunlt is due to [16], where the authors presented
a kernel of (at most}.75k vertices.) Such seemingly minor improvements of the bases are of retabl
importance, as these will render inputs amenable to solsitibat have been previously completely out
of reach. For instance, M. Felloves al. [18] raised the question if it is possible to develop an atbar
for our problem that runs in tim&*(f(k)) for some functionf such thatf(50) < 10%°; the maximal
value ofk still allowing for f(k) < 10%° is also known as the klam value of the according algorithm. It
is instructive to compare the klam values of different alpons for MAXIMUM LEAF SPANNING TREE,
as compiled in Table 1. So, over the last decade, we are skpylyoaching an affirmative answer of the
question posed by M. Felloves al.[18]. The problem to determine if there exists a connectedidating
set in a given graph that is of size at méstnow k&’ being the parameter. is known to be W[2]-complete;
see [15]. Hence, assuming that the parameterized compldagsesFP7 and W[2] do not collapse

) The randomized algorithm by I. Koutis and R. Williams [25iching a running time o®*(2%) is believed to be flawed.
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(which is considered unlikely, similar to the P versus NPdio@), there is no parameterized algorithm
for this problem.

As the number of leaves of a maximum leaf spanning tree camipgeted by a parameterized algo-
rithm, the corresponding graph-theoretic number has bseneanployed in the development of param-
eterized algorithms for several other NP-hard optimizapooblems that may be solved in polynomial
time for graphs of bounded maximum leaf number; see [17]s Binéa of research is called parameter
ecology and also motivates the development of faster paeained algorithms for our problem.

MAXIMUM LEAF SPANNING TREE is also a meaningful question for directed graphs, whichlzan
also stated in the standard terminology of directed graph$ihd an out-branching witk leaves. Here an
out-branching) in a directed graply yields a spanning tree in the underlying undirected gridph &)
andO contains a unique vertex(the root) that has in-degree zero (9. Due to the uniqueness pfthe
arcs are directed i@ from the root to the leaves, which are the vertices of outrelegero. The algorithm
of J. Kneis, A. Langer and P. Rossmanith [24] solves alsogtoblem in time©*(4%). Moreover, in
J. Daligaultet al. [13], an upper-bound ab*(3.72%) is shown. Hence, we are currently in the unusual
situation that the running time for search tree algorithorstlie directed case is no worse than the one
obtained in the undirected case. By using rules that arefgptar the undirected case, we are able to
derive improved running times valid for the undirected casly.

Having shown a graph problem to be NP-complete, there isrd wmy of dealing with this problem,
apart from developing (polynomial-time) approximatiog@ithms or parameterized algorithms (that are
superpolynomial in the parameter). Namely, one could trfjrtd algorithms that are moderately expo-
nential in the numben of vertices of a graph (or even in the number of edges). Tlea af algorithmic
research is also known as exact (moderately) exponetialalgorithms; see [22]. For vertex selection
problems like MNIMUM CONNECTED DOMINATING SET, there is nearly always a rather trivial brute-
force algorithm that tests all vertex subsets. Hence, tlestipn is if it is possible to beat this trivial
O*(2™) algorithm by replacing it with algorithms whose running érman be upper bounded Ky (¢™)
for somec < 2. For MINIMUM CONNECTED DOMINATING SET, the algorithm of F. V. Fomin, F.
Grandoni and D. Kratsch [21] (yielding a running time(@f(1.9407™)) was subsequently improved by a
new one: H. Fernaat al.[19] gave an algorithm with running tim@*(1.8966™) for undirected graphs.
In passing, we will also improve on that result in this paper.

For a summary of the most recent results, we refer to Table 2.

1.1 Our Framework: Parameterized Complexity

A parameterized problen® is a subset o* x N, whereX is a fixed alphabet anl is the set of all
non-negative integers. Therefore, each instance of thenpeterized problen® is a pair(Z, k), where
the second componehts called theparameter The languagé (P) is the set of alYES-instances of°.
We say that the parameterized probléhis fixed-parameter tractablgl5] if there is an algorithm (also
known as garameterized algorithjrthat decides whether an inp{t, k) is a member of.(P) in time
f(k)|I)¢, wherec is a fixed constant andl(k) is a function independent of the overall input length
We can also writé)* (f(k)) for this running time bound. One can certify membership emdlassFPT

of fixed-parameter tractable problems as follows: pres@olynomial-time transformation that, given an
instance(7, k), produces another instangE, k') of the same problem, whef&| andk’ are bounded by
some functiory(k); in this case(I’, k') is also called gproblem) kernel
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1.2 Our Contributions

We developed the simple and elegant algorithm of [24] furtfikis way, we can improve on the running
time towardsO* (3.4575%). This is due to two reasons: We could improve the bottleneck case in the al-
gorithm analysis of J. Daligaudt al.[13] by new branching rule. Due to using amortized analysis, we
were able to prove a tighter upper-bound on the running tFoethis analysis we use a non-standard mea-
sure, akin to theasure&Conquerpproach in exact (non-parameterized) algorithmicsFs&eFomin
and D. Kratsch [22]. Notice however that there are only fearnsgles for usindVleasure&Conquem
parameterized algorithmics. In addition, we analyze ogo@ihm with respect to the number of vertices
n and obtain also small improvements for theNMuM CONNECTEDDOMINATING SET problem. This
seems to be one the first published successful attempts lyzaniae samelgorithm both with respect
to the standard parameterand with respect to the number of verticesapart from [7]. We mention
that the approaches of [13, 19] are going to some extentlmeame direction. The basic scheme of the
algorithms is similar. Nevertheless, our running time sbthat our results are different. Moreover, the
first paper [13] does not make useMeasure&Conquetechniques and the second one [19] follows a
non-parameterized route. So, we conclude this paper by @ratedy exponential-time re-analysis of our
suggested algorithm along the lines of our parameterizatysis. This shows that there is an algorithm
solving MAXIMUM LEAF SPANNING TREEIn time O*(3.4575%) and in timeO*(1.89615™).

MAXIMUM LEAF SPANNING TREE | parameterized algorithm  exact exponential-time
undirected graphs 0*(3.4575%) (%) O*(1.89615™) (*)
directed graphs 0*(3.72%) [13] 0*(1.9044™) [6]

Tab. 2: Records for producing leafy trees

We summarize the various results known for maximum spanimégproblems in Table 2, including
the given appropriate references; a star (*) indicatestti@torresponding results are obtained in this
paper.

1.3 Terminology

We are considering simple undirected graghd/, E) with vertex setl” and edge seEl C {{u,v} |
u,v € V}. We adhere to standard terminology, but we will explain nafst below for the sake of
self-containment of this paper. Edges of simple undiregteghhs can be viewed as two-element vertex
sets, as “simple” prohibits loops and multi-edges. An efige/} might also be written as y.

The neighborhoodof a vertexv € V is Ng(v) = {u | {u,v} € E} and thedegreeof v is
dg(v) = |Ng(v)|]. Theclosed neighborhoois Ng[v] = Ng(v) U {v}. For someV’ C V, let
NV') = (Uper N \ V', Nor(v) = {u € V' | {u,0} € E}, dv'(v) = |Ny(v)], and
Ey/(v) :== {{u,v} € E | uw € V'}; whenV’ = V or E/ = E, we might suppress the subscript.
G[V'] andG[E] are the graphs induced by the vertex Bétand the edge sef, respectively. Hence,
G[V']is defined ax(V’, E') with E' = {zy € E | 2,y € V'}, andG[E] is equivalent ta3(V, E) with
V={cxeV]|3ecE: : zce}

A sequence of vertices = vy, ..., v, is called apathfrom v; tov,, in G(V, E) if, forall 1 <i < n,
vivi+1 € L. The pathp is acycleif v; = v,. The pattp is simpleif, forall 1 < i < j <n,v; # v;. A
graphG(V, E) is connectedf, for all «,v € V, there is a path fromy to v. An edge cut-seis a subset
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E C E such thatG(V, E \ E) is not connected. Areeis a subset of edgeE C E such thatG|[T]

is connected and cycle-free. For simplicity, we occasigridentify G[T'] with T, so that we can write
dr(v) to denote the degree of vertexvithin the tre€l’. A spanning treés a tree such that) _.e = V.

Itis well-known that a graph is connected if and only if it @itk spanning tree. As connectedness can be
decided in linear time, for the purpose of solving our prablé is sufficient to consider graph instances
that are connected.

We conclude with some terminology that is less standarthviahg the concepts introduced by Kneis
et al.in [24]. A treeT’ extendsanother tred” if T C T". We will write 77 = T if T’ extendsI’. An
edgee = zy € E is called abridgeif there is no path fromx to y in G[E \ {e}]. For anyE’ C F let
leaves(E') := {v € V | dg'(v) = 1} andinternal(E') := {v € V | dg:(v) > 2}. The following
simple assertion is important for our strategy:

Lemmal LetG(V, E) be an undirected graph with at least three vertices &nd 1 be an integer.G
admits a spanning tree with at leasteaves if and only if7 is connected and there exists a spanning tree
T C E with at leastk leaves and a vertexe V with dp(r) > 2.

Proof: As G admits a spanning treé; is connected. LeT” be some spanning tree 6f. As G contains
at least three vertice$, must contain a non-leat O

1.4 Overall Strategy

In the rest of the paper, we address the following annotatesion of our problem:

ROOTED k-LEAF SPANNING TREE

Given: An undirected connected grapi(V, E), a vertexr € V calledroot, and the parametér.
Weask: Is there a spanning tréefor G with |leaves(T)| > k with dp(r) > 2?

According to Lemma 1, an algorithm solving this problem o solve:-LEAF SPANNING TREE(with
a polynomial overhead) by considering everyg 1 as the root, sorting out the trivial case wh@rnas at
most two vertices first.

All throughout the algorithm, we will maintain a trdé C E whose vertices aréy := UeeT e. Let
Vo =V \ Vp. T is always part of the solution. During the course of the atgar, 7" will have two
types of leavesteaf nodes (LNandbranching nodes (BN)The former ones will also appear as leaves in
the solution. The latter ones can be leaves or internalcesrtiGenerally, we decide this by branching as
far as reduction rules do not enforce exactly one possibilitternal nodegIN) are already determined
to be non-leaves iff.

The algorithm will also produce a third kind of leavdtoating leaves (FL) These are vertices from
Vr which are already determined to be leaves, but are not yathegt to the tre@. If a vertex is
neither a branching node, nor a leaf node, nor a floating leaf,an internal node, we call EREE
We will refer to the different possible roles of a vertex byadéling functionlab : V. — D, with
D :={IN,FL,BN, LN, FREE}. A given treeT” defines a labeling’r» — D to which we refer byabr.

Let

e INp/ := {’U c Vi | dT/(’U) > 2},
[ LNT’ = {U (S VT’ | dVT' (U) = O,d(U) = 1} a.nd
e BNy = Vi \ (lNT/ U LNT/).
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Then for any IDe D \ {FL,FREE}, we have ID}» = lab}/(ID). We always ensure thatbr and
lab are the same ol whereT is the tree constructed by the algorithm. We suppress thecspbif
we are refering to this tree. The subscript might be suppte8s” = 7. If 7" = T, then we assume
that INy C INp and LNy € LNp.. So, the labels IN and LN remain once they are fixed. For the
other labels, we have the following possible label traosgiin the course of the algorihm: F& LN,
BN — {LN,IN} and FREE—~ D \ {FREE}.

Henceforth, we assum®&| > 4, as smaller instances can be easily resolved.

1.5 Parameterized Measure&Conquer

The number of leaves in the corresponding recursion treeiges a good estimate for the running time
of branching algorithms that are designed to explore a lsegech space. This is based on the fact that
there are at most twice as many nodes in a recursion tree o somputation as there are leaves in
that tree, as nodes with exactly one child are merged withcthitd in this kind of reasoning. Assuming
now a polynomial amount of work associated to each node afettwersion tree, the overall running time
is dominated by the number of leaves of the recursion trepaiticular when using thé&*-notation.
Traditionally, to each node of the recursion tree, an (aaed) instance is associated, which would be in
our case, a graph, a current parameter buéigand vertex sets BNLN, FL. Progress of the recursion
would be measured by reducing the current parameter budgethe root node of the recursion tree,
the original instance would be associated; in particuteg,gjarameter budget would be initialized with
the parameter value associated to this instance. As canelpebsethis type of explanations, the word
“parameter” plays a sort of double role here. This is all®daby a shift of perspective as provided by
parameterize®leasure&Conquer

There, a so-called measure (also known as potential furjasdnstantiated with the parameter value
associated to this instance. This measure will hencefathded to keep track of the progress that the
branching algorithm makes. The measure does not only @gter‘current parameter”, but also struc-
tural information obtained during the execution of the aittpon. In other words, this structural informa-
tion does not necessarily refer to the case that some olgjeefixed to be in the future solution. It can
comprise much more, for instance, degree-one vertices;clgles, etc. Clearly, we have to show that
the budget never increases on applying reduction rulesetdecreases in case of recursive calls. But
additionally, once our budget has been completely consuneedwvhen the measure drops down to or be-
low zero, we must be able to give an appropriate answer imgoiyal time. As in general we accounted
for more than only parts of a future solution, taking into@aat structural details of the graph, this might
become a hard and tedious task. If we are able to fulfill allrttentioned conditions, we can prove a
running time of the formO*(c*). Further examples of this approach are collected in the PleBig of
one of the authors [2], and several publications using fhis@ach have appeared [3, 4, 5, 20, 7].

Following usual conventions in this area, we will call thgemh named recursion tree in this subsection
asearch treehenceforth.

2 Reduction Rules & Observations
2.1 Reduction Rules

Most often, so-called reduction rules are the main buildilagks of polynomial-time algorithms achiev-
ing a problem kernel. In our case, we are not so much intetéstderiving a kernel, referring to [11]
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for the currently best kernelization algorithm instead.tiea, our reduction rules are part of a search
tree algorithm that we describe in details later. At thigetait is important to keep in mind that the
search tree will construct a (rooted) trEewithin the graph to which we refer in the following rules. The
leaf nodes off" that are not yet decided to become leaf nodes in the final apgutree we are going
to construct are collected into the set BN of branching nodiésreover, we have a possible empty set
of floating leaves FL. Hence, when we speak about the coesstaf the proposed reduction rules, we
argue always in the sketched situation. So, more formalgrainstance can be now viewed as given by
I = (G(V,E),T,BN,FL), arule is sound if the following is true: for any such instard¢the instance
r(I) = (r(G(V,E)),r(T),r(BN),r(FL)) produced by applying rule to I (the effect of such an appli-
cation is described below in each case) satisfiesdmits a spanning tre€’ with 77 >~ T', with at least:
leaves if and only if-(I) admits a spanning tré&’ with 7" - »(T") with at least: leaves.

To see the overall correctness of the proposed algorithnitamdnning time analysis, it is also nec-
essary that the measure never increases by any such operatis will be shown in Lemma 10. One
helpful observation for this (that can be seen already atstiaige) is also the fact that neither our reduction
rules nor our branching rules (stated below) will ever cleatig status of a vertex from an internal node
to a leaf node (be it free or not) or vice versa.

We assume that reduction rui¢ is applied beforéi+1). The ruleg1)-(3) also appeared in a previous
paper coauthored by a superset of the present authors [b®]th& sake of completeness, we not only
state but also prove the correctness of all reduction rhkesvte need in this paper.

(1) Ifthereis an edge € E \ T with e C Vp, then delete.

(2) Everyu € BN with d(u) = 1 becomes a leaf node and everye FREE withd(u) = 1 becomes a
floating leaf.

(3) If there is a vertexy € BN such that the removal aby;_(u) in G[V' \ FL] or G[V] creates two
components, then becomes internal.

(4) If there are free vertices, v such that there is a bridde:, v} € E \ T in G[V], whereC}, C; are
the two components created by deleting v} and if[V(C1)| > 1 and|V (C2)| > 1, then contract
{u,v}. The new vertex is also free.

(5) Delete{u,v} € E'if uandv are floating leaves.

(6) Delete{u,v} € E\ Tif dy(u) =2,u € BN and at least one of the following two cases apply:
a) dy(v) =2,0rb)v € FL.

(7) Delete{u, v} if u € BN with dv (u) = 2, Ny;_(u) = {v} anddy,.(v) > 2; see Figure 1(a).

(8) If u,x1,zo form a triangle,x; is free and{h} = Ny (x1) \ {x2,u} such thatdy (h) = 1 (see
Figure 1(b)) therx; becomes a floating leaf artdwill be deleted.

(9) If h € Vr is a free vertex such that) Ny.(h) = {q} andd(q) = 1 orb) dy_(h) = 0 (see
Figure 1(c)) therh becomes a floating leaf amds deleted in case).

Lemma?2 The reduction rules are sound.
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q
U [V C T To

(8) RR7) (b) RR(®) (c) RR9)

Fig. 1: Bold edges are frorfi’. Dotted edges may be present or not.

Proof: Let 7" be a spanning tree with” - T such thatleaves(T”)| > k.
(1) Any edgee € E'\ T with e C Vp added tdl” would introduce a cycle.
(2) In this casey must be a leaf node i’ due to its degree constraint.

(3) If By (u)is an edge cut-set i[V], thenu must be internal as we are looking for a spanning tree.
AssumeEy; (u) is an edge cut-set i@V \ FL| but notinG[V]. If laby/(u) = LN, i.e.,u is a leaf
node in7’, then there must beaae FL with dr/(z) > 2. Thus,z € IN7, a contradiction.

(4) Let G’ be the graph which emerges by contract{ngv}. We can assume that we ha¥e (u) > 2
anddr (v) > 2 due to connectivity. By contracting:, v} in 77, we get a solution fo&’. If G’ has
a spanning tre@&™ = T with k leaves, then the same is true ey namely, the vertex obtained by
identifyingu andv cannot be a leaf node ifi*, as each of the componertts contains at least two
vertices andiv was a bridge ir7; so, we can form an extensi@’ from 7* with |leaves(T")| > k
by making bothu andv internal in7T” and keeping all other edges frdht.

(5) If {u,v} is part of a solutiorf” thenT”’ = K. This contradict$V| > 2.

(6.a) Considefe := {u,v} € E\T withu € BN anddy (u) = dy (v) = 2. For the sake of contradiction,
suppose that € 7’ and that neithen norv are leaves iff”. By removinge, u andv become leaves
andT” is split into two component$; andT}. As e is not a bridge and sincE’ is spanning, there
isae’ :={a,b} € E\ (I"Ue) such thatl™ = T7 U T, U {e'} is connected. Due to adjoining,
at most two leaves (iff”’) will become internal (in*). Hence,|leaves(T*)| > |leaves(T")|. It
is possible thatab(a) = FL, but if it was true that for every such edgeone of its endpoints is
a floating leaf, then we could have applig), as 5, (v) would be an edge cut-set @[V \ FL].
Since Rulg3) takes priority/ab(a) = FL is excluded.

If e := {u,v} € T" andu or v is a leaf inT”, then the proof of6.b) applies, possibly exchanging
the roles ofu and ofw.

(6.b) Suppose: := {u,v} € T’. In this case, we know thal, (v) = 2, v € BN andw is a leaf inT".
As ¢ is not a bridge by3) and(4), there is are’ = {v,z} € E\ T’ with  # w andz ¢ FL. Let
T := (T"\ {e}) U {e'}. Note thatjlecaves(T*)| > |leaves(T")| asu is a leaf inT* but not inT’
andv is a leaf both il and inT™*.
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(7) Letq € Ny, (v) \ {u} and assume := {u,v} € T’. Thene’ := {v,q} € T" asq € Vr.
LetT* = (T"\ {e}) U {e'}. Then|leaves(T™*)| > |leaves(T")| aslabp~(u) = LN.

(8) LetG* be the reduced graph. Y, 2; must be internal. Observe that we can assumedhdt:; ) =
2 (O). Otherwise{u,z1},{z1, 22}, {z1,h} € T, {u,z2} ¢ T" and, w.l.o.g.,u is internal as
|[V| > 4. Then simply deletd zq, 22} from 7" and adjoin{u, z2}. This way we can ensuré&lj.
Due to (J), we conclude that’* has a spanning tree withleaves iffG has one.

(9.a) Note that we havéy (h) = 2 since otherwisd” contains a cycle or is not connected. It be
the reduced graph. Analogously ag(8), we can show thatz* has a spanning tree withleaves
iff G has one.

(9.b) If dr/(h) > 1, thenT” would possess a cycle. O

Lemma 3 Reduction rulg1) does not create any bridge ifi \ T'.

Proof: Suppose an edge = {u,v} ¢ T is deleted by(1) and a second edgé = {x,y} € E\T
becomes a bridge it*[E \ {e}]. ThenG’ := G[E \ {e,e'}] consists of two components; andG»
such that, w.l.o.g.;,z € V(G1) andy € V(G2). Thus, there is a simple path = rh; ... gy in
G such thath; # x,y (1 < i < /) and there is g, wherel < j < ¢, with, W.I.o.g.,hj = u and
h j+1 = v. Asu,v € Vp there is a simple pat®’ in G1[T'] from u to v such thate,e¢’ ¢ E(P’). Let

=rhi...hj—1P'hjio... hey. P is a path inG’ which connects andy avoidinge ande’. Thus,e’ is
not abridge inG[E \ {e}]. O

From now on, we assume th@tis reduced according to the given reduction rules in anyh&rrtis-
cussion of our branching algorithm.

2.2 Observations

If N(internal(T)) C internal(T) U leaves(T), we callT aninner-maximatree. This notion gave rise
to the following crucial lemma in the paper of J. Kneis, A. genand P. Rossmanith [24]:

Lemma4 ([24] Lemma 4.2) If there is a treeT” with leaves(T’) > k such thatT” = T andz €
internal(T") then there is a tre§"” with leaves(T") > k such thatl” = T, x € internal(T") and
Ey(z) CT".

Due to the previous lemma, we can restrict our attentionneriimaximal spanning trees. And in fact
the forthcoming algorithm will only construct such treesheh for av € internal(T) we have that
Ey (v) C T as by Lemma 4 we can assume tfias inner-maximal. Thus, in the very beginning we have
T = EV (T‘)

Lemmas Letv € BNy and Ny (v) = {u}. If none of the reduction ruled)-(9) applies, then. is free
anddy_ (u) > 2.

Proof: Note thatdy (v) = 2. Moreoveru ¢ IN U BN U FL due to7’s inner-maximality(1) and(6.b).
Thus,u is free. Ifdy;_(u) = 0 then(9.b) could be applied. Ifiy; (u) = 1 then either we can app(B)
(if {u,v}isa bndge) o1(6.a) or (7) depending on whethel.. (u ) > 2 ornot. O



188 Daniel Binkele-Raible, Henning Fernau

We are now going to define some functian: BN — V. Forv € BN, let

{ Z 7\[ (() —2{u}

co(v) =

Note thatco is well defined on a reduced instance as we hye(v) > 1 (otherwise it becomes a leaf
node(2)). Note that we havéy; (co(v)) > 2 because eithety; (v) > 2 ordy (v) = 1. Inthe latter
case,Neree(v) = Ny (v) = {u} such thatdy;_(u) > 2 by Lemma 5. ThIS property will be used
frequently.

The next lemma has been shown by [24] and is presented ugrigttbduced definitions of this paper.

Lemma 6 ([24] Lemma5) Letv € BNy such thatVy; (v) = {u}. If there is no spanning tre€” - T
with k leaves andabr (v) = LN, then there is also no spanning tré€ - T with k leaves/abr (v) =
IN andlabTu (u) = LN.

Observe that for a vertexwith co(v) # v once we setab(v) = IN thenitis also valid to sdub(co(v)) =
IN. By Lemma 6 we must only ensure that we also consider thsilpitis/ lab(v) = LN.

A Further Reduction Rule With the assertion of Lemma 5 in mind, we state another récluctile:
(10) If w € BN with 21 € Negreg(w) such that a free degree one verggs adjacent ta:; and if further
a) there existy € BN with Ny (v) = {z1,z2} and{z1, 72} € E, see Figure 2(b), or
b) there existy € BN with co(v) # v andNy;_(co(v)) = {71, 2}, see Figure 2(e),

then sefab(v) = LN.

Lemma 7 Rule(10) is sound.

Proof: We have to consider both cases of the rule separately.

a) Let T > T be a spanning tree withuby: (v) = laby/(co(v)) = IN. ConsiderT* = (T’ \
{z1v,220}) U {way,z 22}, see Figures 2(b) and 2(c). Agbr:(z1) = labr-(x1) = IN and
labr-(v) = LN we havel|leaves(T*)| > |leaves(T’)|. Hence, we do not have to consider
lab(v) = lab(co(v)) = IN.

b) We can skip the possibilityab(v) = lab(co(v)) = IN. Assume the contrary. In that case con-

siderT* := (T \ {vco(v)}) U {z1 w}, see Figures 2(e) and 2(f). Then we hdlawves(T*)| >
|leaves(T")| asz; must be internal. Note thaabr«(v) = LN.

d

The next lemmas refer to the case where thererissaBN7 with dyz_(co(v)) = 2. In the following,
we use the abbreviatioN := {co(v), x1, z2}.

Lemma8 LetT C E be a given tree such thate BNy and Ny (co(v)) = {x1,22}. LetT”, T be op-
timal spanning trees under the restrictiof§ - T', T* >~ T, laby:(v) = LN, labr« (v) = labp«(co(v)) =
IN andlabp«(x1) = labp«(x2) = LN.
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(8) RR10.a): Before (b) RR(10.2): TreeT” (c) RR(10.2): TreeT™
the rule applies

(d) RR(10.b): Before (e) RR10.b): TreeT” (f) RR(10.): TreeT™
the rule applies

Fig. 2: Bold edges are frorfi’. Dotted edges may be present or not.

1. Ifthereis az € ((N(z1) N N(x2)) \ N), then|leaves(T")| > |leaves(T™)|.

2. If colv) = v,y € N(z2) \ N, z € N(x1) \ N with labp«(z) = IN, then|leaves(T")| >
[leaves(T™*)| .

3. Ifco(v) #vandifthereisa € ((N(x1) UN(x2)) \N) with labr«(z) = IN, then|leaves(T")| >
[leaves(T™*)|.

Proof:

1. Firstly, supposeo(v) = v. Considerl'" := (T*\ {vz1,vz2}) U {221, 222}, See Figures 3(a)
and 3(b). We havéabs+(v) = LN and z can be the only vertex besideswherelab,+(z) #
laby-(z). Thus,z could be the only vertex withubr+ (z) = IN andlabr-(z) = LN. Therefore,
|leaves(T")| > |leaves(TT)| > |leaves(T*)|. Secondly, ifco(v) # v then considefl'” :=
(T*\ {vco(v),co(v)za}) U{zx1, 222} instead of .

2. Consideflt := (T*\ {vx1,vae})U{zx1,y 22}, See Figures 3(c) and 3(d). We hdué,+ (v) =
LN and at most fory we could havéabr-(y) = LN andlabs+(y) = IN. Hence,|leaves(T")| >
[leaves(T™)| > |leaves(T*)].

3. W.l.o.g.,z € N(x1) \ NV. ConsiderT# := (T* \ {vco(v)}) U {zz1}. We havelab;+(v) = LN
and thereforéleaves(T")| > |leaves(T#)| > |leaves(T*)|.
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a

Lemma9 LetT C E be a given tree such thate BNy and Ny (co(v)) = {x1, x2}. LetT”, T be op-
timal spanning trees under the restrictiohs - 7', T* - T', laby: (v) = LN, labp+ (v) = labp«(co(v)) =
IN andlabT* (,Tl) = LN.

1. If co(v) = v, {x1,22} € F, N(z2) \ FL = {v,z1} and if there is az € N(z1) \ N with
labr«(2z) = IN, then|leaves(T")| > |leaves(T*)|.

2. Ifco(v) # v, N(z2) \ FL C {co(v),x1} and if there is & € N(z1) \ N with labr+(z) = IN, then
[leaves(T")| > |leaves(T™*)].

3. Iflabr«(z2) = IN, dr+(x2) = 2, Ey;_(v) is not an edge cut-set i&G[V] nor G[V \ FL|. if in
addition there is & € N(x1) \ N with labr+(z) = IN, then|leaves(T")| > |leaves(T™*)|.

Proof:

1. Considefl't := (T* \ {vx1,vz2}) U{zs 22,2 x1}. Note thatiabr+ (v) = LN andz; is the only
vertex where we haviebr-(z1) = LN andlabp+ (z1) = IN. Observe thaf'* is indeed a spanning
tree. Itis impossible that we have created a cycle, becauisethe only non-FL neighbor af; in
T+. Thus,|leaves(T")| > |leaves(TT)| > |leaves(T*)|.

2. Considefl# := (T* \ {vco(v)}) U {zx} instead ofl+ from item 1.

3. First assumeo(v) = v. Considefl't := (T*\ {vx1,vx2}) U {221}, see Figures 3(e) and 3(f).
Due to Lemma 4"t is a forest consisting of two tred§" andT,", wherev andz» have become
leaf nodes. ThuBeaves(T™")| — 2 = |leaves(T*)|. As Ey;_(v) is not a edge cut-set there is some
e € E\ (Tt U Ey(v)) such thatl'**+ := T+ U {e} is connected. Furthermor&;" has at most
two leaf nodes more thafi™™ as the addition oé might turn at most two leaf nodes into internal
nodes. Thus aBib;++(v) = LN, |leaves(T")| > |leaves(TTT)| > |leaves(T*)|. Note also that
e can be choosen in a way that its addition will not turn any fitapteaf of the current labeling of
T+ into an internal vertex as otherwi€® applies.

If co(v) # v then considel# := (T*\ {vco(v), co(v) z2})U{z 1} instead of ' . As Eg (v)is
notan edge cut-seti@[V], {v, co(v)} is not a bridge. Thus, there is are E\ (T# U{{v, co(v)}})
such thatleaves(T# U{e})| > |leaves(T*)| andT# U{e} is a spanning tree whetes LN-node.

Note also that for the same reasons as in the cagg = v, the edge: can be choosen such that
any floating leaf is preserved.

a

In [24] the bottleneck case was when branching on a vertexB N with at most two non-tree neighbors,

thatisdy; (v) < 2. Inthe last two lemmas we considered this case. If the bt case also matches

the conditions of Lemma 8 or 9 we either can skip some receis or decrease the yet to be defined
measure by an extra amount. Otherwise we show that the branlséhavior is more beneficial. This is

a substantial ingredient for achieving a better runningetimpper bound.
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Algorithm 1: An algorithm solving k-LEAF SPANNING TREE
Data: A graphG(V, E), k € Nand atred C E.
Result: YES if there is a spanning tree with at ledskeaves andNO otherwise.
1 ifk(G) <0or|BN + |LN| > k then
2 | returnYES
3 eseif G[V \ FL] is not connected or BN () then
a | returnNO
5 else
6 Apply the reduction rules exhaustively
7 Choose a vertex € BN of maximum degree
8 if dy(co(v)) > 3 then
9 | (veLN;u,co(v) €IN) (B1)
10 else
1 (Note that now we must hawy;,_(co(v)) = {z1, 22})
12 Choosev according to the following priorities:
13 case ({x1,z2} CFL) or (B2.a)
14 (21 € FREE& dy \ pr(21) = 0) Or (B2.b)
15 (#1 € FREE& Ny (1) = {2} & (dy,\pr(2) < 1orz € FL)) (B2.c)
16 L (v € LN; v, co(v) € IN) (B2)
17 caser; € FREE x5, € FLor (B3.a)
18 x1, 2 € FREE Ngp(22) C {1, co(v)} or (B3.b)
19 xr1, X2 € FREE& d/VT\N(xQ) =1 (B3C)
20 (v € LN; v, co(v) € IN,z1 € LN; v, co(v), 1, co(x1) € IN) (B3)
21 | and applymakel eaves(zy,z:) in the 2nd branch
2 caseri,zo € FREE& 32 € (N, o Nepya (@)
23 (v € LN; v, co(v), 22, co(x2) € IN 21 € LN; v, co(v), 21, co(x1) € IN)
24 B (B4)
25 otherwise
26 (v € LN; v, co(v) € IN,x1,x2 € LN;v, co(v), z2, co(xe) € IN,z1 €
LN; v, co(v), z1,co(x1) € IN) (B5)

27

and applymakel eaves(zy, x2) in the 2nd branch

Proceduremakel eaves( z, z2)

1 beg
2

3
4 end

in
Vu € [(N(z1) UN(x2)) \ {N}] N FREE setu € FL;
Yu € [(N(z1) UN(z2)) \ {N}] N BN setu € LN;
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(@) Lemma 8.1 (b) Lemma 8.1 (c) Lemma 8.2

(d) Lemma 8.2 (e) Lemma 9.3 (f) Lemma 9.3

Fig. 3: Bold edges are frorfi’. Dotted edges may be present or not.

3 The Algorithm

We are now ready to present Algorithm 1.

We mention that if the answ&fES is returned &-leaf spanning tree can be constructed easily. This
will be guaranteed by Lemma 10. For the sake of a short praentof the different branchings, we
introduce the following notatiofb,; bo; . . . ; b,,), called abranching Here the entries; are separated by
semicolons and stand for the differgrdrts of the branchingThey will express how the label of some
vertices change. For exampler € LN; v, co(v) € IN). This stands for a binary branching where in the
first part we setab(v) = LN and in the seconéub(v) = lab(co(v)) = IN. Note that the non-standard
run time measure will be defined later.

3.1 Correctness

3.1.1 Branchings

When we sefab(v) = IN, then we also sel’ < T U {{u,v} € E | u ¢ Vr}. This is justified by
Lemma 4. If we setab(v) = LN, then we delet§{u,v} € E | {u,v} ¢ T} as these edges will never
appear in any solution.

In every branching of our algorithm, the possibility that(v) = LN is considered. This recursive call
must be possible, as otherwi&) would have been triggered before. Now consider the cage # v.
If the recursive call folab(v) = LN does not succeed, then we consitiér(v) = IN. Due to Lemma 6
we immediately can also sétb(co(v)) = IN. This fact is used throughout the branchings (B1)-(B5).
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Nonetheless, in the branchings (B1), (B2), (B3) and (B5)epessibility forv, z; andx- is considered
in one part of the branching, i.e., these are exhaustivechiags. But in (B3) and (B5) the procedure
makel eaves() isinvoked and (B4) is not exhaustive. We will go through esghcase and argue that
this is correct in a way that at least one optimal solutiorrésprved.

B3.a) In the second part of the branch, every vertef\(z1) U N (z2)) \ {N} can be assumed to be a
leaf node in the solution. Otherwise, due to Lemmas 8.2 a®dSsolution, which is no worse than
the neglected one, can be found in the first part of the bramenwe setab(v) = LN. Therefore
the application ofrakel eaves( x1,z1) is correct.

B3.b) Thereis az1 € Nep\ pr(21) (DY (3)). If co(v) = v then we must havéz,,z.} € E due to(3).
Thus, either Lemma 9.1 or 9.2 applies (depending on whetl{ej = v or not). As in the previous
item it follows that the application ofakel eaves( z,x1) is correct.

B3.c) Letz; € Nﬁ\_/\/(xl) andT > T be an optimal spanning tree solution extendinguch that
labj(v) = labz(co(v)) = IN andlabs(x1) = LN. If labs(2z2) = LN, then Lemmas 8.2 and 8.3
apply. This means in the branch settingo(v) € IN,z; € LN, we can assume that vertices in
(N(xz1 UN(z2))) \ N are leaves, i.e., we can adjoin them to FL or LNld(z2) = IN, then we
must havel;(z2) = 2. Thus, Lemma 9.3 applies. This can be seen as follows.

Let us recall the situationtab;(v) = labs(co(v)) = IN, labs(x1) = LN andlabs(x2) = IN.

Thus,d;(z2) = 2 due to the precondition aB3.c). £y, (v) is not an edge cut-set i#[V] nor in
G[V \ FL] due to(3). Therefore, Lemma 9.3 applies here.

Thus, in the second part of the branch we can assume thatesstex in N (z,) \ NV is a leaf. Any
solution which violates this assumption can be substitbied no worse one wheree LN which

is assured by Lemma 9.3. This justifies callmgkel eaves( x1, 1) .

(B4) does not consider the possibility tHab(v) = IN andlab(x1) = lab(x2) = LN. Here we refer to
Lemma 8.1, which states that a no worse solution can be folnathwe setab(v) = LN.

(B5) If co(v) = v, then by reduction rul€3) we haveN (z;) \ {v} # 0. If co(v) # v then it fol-
lows thath:1 N(z;) \ V' # 0 analogously. Then due to Lemmas 8.2 and 8.3 an application of
makel eaves( x1,x2) is valid. Note that Lemmas 8.2 and 8.3 can also be read withasged
roles between;; andzs.

3.1.2 The Measure
To derive an upper-bound on the running time for our algarittve use the measure

k(G) ==k —wy - |[FL| — wyp - |BN| — |LN]| with w;, = 0.5130 andw; = 0.4117.

k(@) is defined by a tre@ and a labeling (which both are to be built up by our algorithfifjus, we use
a subscript when we are referring to this, i) 7.
Parameterized Measure & Conquer poses two special problems

e When our algorithm returngES, thenT" might still not be a spanning tree. We first have to attach
all the floating leaves td@". It is possible that a branching node turns into an interioalenand
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thusx(G) increases. The next important lemma shows that if we takénhalfloating leaves and
branching nodes into account, thefG) decreases.

e The application of reduction rules never increase the nreaatileast in the case when this appli-
cation is exhaustive.

Lemma 10 If for a given labeling<(G) < 0, then a spanning tre@ with |lecaves(T)| > k can be
constructed in polynomial time.

Proof: Delete the vertices in FLand compute a depth-first spanning tie&' for the remaining graph
starting fromT'. Then simply attach the vertices from fIto one of its neighbors i7T". This way we
obtain a spanning tréB = T. Let LBN = BNy N LN and IBN= BNz \ LBN. Forc < IBN, let T;. be
the subtree rooted aiin 7'. Clearly,|leaves(T.)| > 1 (0). Observe that each vertexc FL; ULBN now
decreases((); by one due to the labeling und&r Thus,x(G); was decreased iy —wy) or (1 —ws),
resp., with respect te(G)r due to turning into a leaf node. The following chain of inequalities shows
that|leaves(T)| > k.

E—|LN#| = r(G)3 < K(G)r —|LBNJ|- (1 —wp) + |IBN|-wy — [FL[ - (1 —wy)
< K(G)r +|IBN|-wp — Zc@BN lleaves(T,)| - (1 — wy)
< K(G)r +[IBN[ - (wp +wy — 1) < K(G)r < 0. (by ()

Next we consider the interaction of the reduction rules whéhnmeasure.

Lemma 1l An exhaustive application of the reduction rules neveréases:(G).

Proof: Rule(2) decreases(G) by 1 — wy, orw;. The deletion of an edge froifd \ 7' can cause a change
in x(G) only in one way: a branching node can become a leaf node. f@pis decreased by — wy.

If one of (1), (5), (6) and(7) applies, then exactly such an edge is deleted10j applies, then a vertex
v € BN becomes a leaf node. Thus, one or more edges are deletédematbres(G) is not increasing.
In (3) there is a vertex. € BN which becomes internal. Thusg(G) increases bw,. Moreover, there is
a second vertey € Ny (u). If ¢ is free, then it becomes a branching node a(@) decreases byy,.
Thus,x(G) does not change if we sum up both amountg.i¢fa floating leaf, then it becomes a leaf node.
Thusk(G) decreases by — w; — w, > 0. As in (4) an edge with with two free vertices is contracted
such that the resulting vertex is also freé(7) remains the same. |{8) a free vertex becomes a floating
leaf and a vertex with degree one is deleted. As we have FL, x(G) does not change. Ru(8.a) can

be analyzed analogously. (8.b) a free vertex turns in a floating leaf ar(GG) decreases byy. O

3.2 Running Time Analysis

In our algorithm the changes @f(G) are caused by triggering reduction rules or by branchingthén
first case Lemma 11 ensures thdtz) will never increase. In the second case we have reductions of
k(@) of the following type. When a vertex € BN becomes a leaf node (i.e., we $eh(v) = LN) then
x(G) will drop by an amount of1 — w;,). On the other hand whenbecomes an internal node (i.e., we
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setlab(v) = IN) then x(G) will increase byw,. This is due tov not becoming a leaf. Moreover, the
free neighbors of become branching nodes and the floating leaves become léa$ ndue to Lemma 4.
Thereforex(G) will be decreased by, and1l — wy, respectively. We point out that the weighigs and
wy have to be chosen such th&i=) will not increase in any part of a branching of our algorithm.

Analyzing the Different Branching Cases
(B1) Leti := [Ny (co(v)) NFL| andj := [Ny (co(v)) N FREE. Note thati + j > 3. Then the
branching vector isf1 — wy, i - (1 — wy) + J - wp — wp)-

(B2) a) The branching vector il — wy,, 2 - (1 —wy) — wp).

b) When we setab(v) = lab(co(v)) = IN the vertexz; will become a leaf node due td). The
branching vector i$l — w;, 1 + min{l — w;,wp} — wyp). The vertexes contributes an amount of
min{l — wy, w, } depending on whether, € FL or z, € BN.

c) Firstly, suppose that € F'L.
1.d(z)=1:

(@) co(v) = v: If {1,220} ¢ E then either(9.a) or (3) applies (depending on whether
dyy (x1) > 1). If {z1,22} € E, thenthereissome € Ny, (1) \ {v}, as otherwis¢d)
applies. But thel10.a) applies.

(b) co(v) # wv: If dy,.(x1) = 0, then either(8) or (4) applies (depending on whether
{1, 22} € E). If dy,.(z1) > 0, then(10.b) applies.

2. d(z) > 2 : After settinglab(v) = lab(co(v)) = IN and applying(1) exhaustively we have
d(x1) = 2 andzy, 22 € BN afterwards. Observe that adding an edgé&'tdoes not create a
bridge. The same holds for ru{g) (Lemma 3). Thus, rule@) or (4) are not triggered before
the rules with lower priority. A$2) and(5) do not change the local setting with respectio
andz (6.b) will delete{x1, =z}, leading to &1 — wy, 1 + min{l — wy, wp} — ws) branch.

The case that € FREE can be seen by similar arguments. Observedih@t) > 2 by (2). Inthe
part where we set, co(v) € IN we obtain atred” := T'U Ey;_(co(v)). Then rule(1) will delete
edges incident ta; such thatly (z1) = 2 andx; € BNy

1. If dp(2) > 2, then(7) deletes{x1, 2 }.

2.1f dr/(z) = 1, then bydg(2) > 2 anddy  5-(z) < 1 we deduce thal:(z) = 2 before setting

v, co(v) € IN. Note thatze ¢ N(z) asze € Vr/. Hence(6.a) deletes{z,, 2} afterwards.

Hence we have @l —w, 1 + min{1 —wy, w, } — wyp) branch. We point out that it is guaranteed that
no reduction rule triggered aftét) of lower priority than(6) and(7) will change the local situation
with respect tar; andz (note Lemma 3).

Remark 12 From this point on, w.l.o.g., for a free vertex, i = 1, 2, we have:
1. dVT\N(fCi) > 2o0r
2. Ny, n(@i) = {2} such thatdy;_, \/(z:) = 2andz; ¢ FL.

If dVT\N(xi) = 0, then (B2.b) would apply. Hy .\ »-(zi) = 1 and2. fails then case (B2.c) applied.
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Remark 13 Note that if2. applies tox;, then when we séub(v)) = lab(co(v)) = IN, we have that
co(x;) = z; after the application of the reduction rules. In this senséH{ a slight abuse of notation) we
setco(x;) = x; if casel. applies andeo(z;) = z; if case2. applies.

(B3) If z; is free letfl; := |(N(co(z;)) \ N) NFL| and fr; := |(N(co(z;)) \ N') N FREE.

Due to Remark 12 we havll; + fr; > 2.

a) Note that we must have that:= Ng(z1)\N # 0 due to(3). If co(v) = v, then alsaV (z;)\{v} # 0
(¢ = 1,2) due to(3). Hence, in the second branch for everg S we getw; if lab(q) = FREE
as we setab(q) = FL in nakel eaves(x1,z1) . If lab(q) = BN, we setlab(¢) = LN in
makel eaves(x1,z1) and receivel — w,. We have the following reduction ir(G) for the
different parts of the branching.

v € LN: 1 — wy.
v €IN,co(v) € IN;zq € LN: 1+ min{wy, 1 —wp} +1 —ws —wp
v,co(v),z1,c0(x1) € IN: 1 —wr + fl1(1 —wy) + fr1 - wp — wp.

Remark 14 Note that from this point we have that andx, are free.

b) Note that we must have that := Ng(z1) \ N # 0 due to(3). Analogously as ira) we obtain
min{wy, 1 — wp} in addition fromN (z;) \ NV in the second part of the branch. Thus, we have the
branching vector

(1 —wp, I+ min{ws, 1 —wp}t +wp — wp,wp + fla(1 —wyp) + fri-wp —wp).(0)

Remark 15 Observe that from now on there is always a vertgx Nﬁw(:ci) (: = 1,2) due to the
previous case.

¢) This entails the same branch aslim)(

(B4)Due to Lemma 8.1 a
(1 —wp, L+ fro-wp+ flo- (1 - o.)f) — wp,wp + fry - wp + fl1 - (1 - o.)f) - wb) branch
can be derived.

(B5) In this caseﬂi:u Nﬁw(:ci) = () is true, as otherwise (B4) applies. This meansifer 1, 2 there
are two different vertices; € Ner, \-(z:) (Remark 15). Due to (B3.c) we havg_, -(zi) > 2. Thus, in
the second part we additional dgtry + fr2) - wy. If fr; = 0 we get an amount of — w;, by Remark 15.

v € LN: 1 — wy.
v,co(v) € IN,z1, 22 € LN: 24 (fr1+ fra)-wy+ (max{0,1— fr1} +max{0,1— frao}) - (1 —ws) —wsp
v, co(v), x2,co(x2) € IN,; 2z € LN: 14 flo - (1 —wy) + fro - wp — wp

v, co(v),x1,co(x1) € INTwy + fli - (1 —wy) + fri - wp — ws.
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We have calculated the branching number for every mentioe@arsion such that < fr; + fl; < 5,

i = 1,2, with respect tau, andw;. The branching number of any other recursion is upper-bedy
one of these. We mention the bottleneck cases which attaigitien running time:
CaseqB3.b)/(B3.c)and Cas€B5) such thaTdVT\N(xi) = 2anda) fl; = flo =0, fry = fro = 2,

b) fri =2, fl1 =0, fro = flo = 1; compared to [13] casgB5) has been improved. We can find at
least two vertices which are turned from FREE vertices tdifigdeaves or from branching nodes to leaf
nodes. In [13] only one vertex with this property can be foumtthe worst case. Thus, due to the previous
case analysis and the fact that the reduction rules can loeitexkin polynomial time, we can state our
main result:

Theorem 16 k-LEAF SPANNING TREE can be solved in timé&*(3.4575%), using polynomial space.

4 An Exact Exponential Time Analysis
We stated the running time of Alg 1 in terms/ofvherek is the number of leaves in the spanning tree.

Exponential Time Analysis F. V. Fomin, F. Grandoni and D. Kratsch [21] gave an exact egptal-
time algorithm with a running time o®*(1.9407™). Based on and re-analyzing the parameterized al-
gorithm of Kneis, Langer and Rossmanith [24], this was rdgemproved toO*(1.8966™), see [19].
We can show further (slight) improvements by re-analyzingmarameterized algorithm. Therefore, we
define a new measure:

Ti=n—Q - |FL| — & - [BN| = [LN| — |IN| with &, = 0.2726 and@; = 0.5571.

The remaining task is quite easy. We only have to adjust thedhing vectors we derived with respect to
k(G) to T. This leads to Table 3.

Note that in case@B3) b)and(B3) c), we were making a case distinction based:ofx). If co(z1) #
x1 then in the branch where we setco(v), z1, co(z1) € IN we can decrease by one more aso(z1)
can be counted additionally. ¢b(x1) = 21 thenfr, - @5 +max{0,1— frl}-(1—a) is the least amount
by whichr is reduced due to the applicationmdkel eaves( x1,x1) .
It can be checked that every branching number of the abouesieas is upper bounded 6 (1.896157).

Theorem 17 MAXIMUM LEAF SPANNING TREE can be solved ir0*(1.89615™), using polynomial
space.

5 Conclusions

Parameterized Measure & Conquer Amortized search tree analysis, also knowriMesasure & Con-
quer, is a big issue in exact, non-parameterized algorithmidthoigh search trees play an important role
in exact parameterized algorithmics, this kind of analiisis been rather seldom applicable. Good exam-
ples are the papers of Fernau and Raible [20], which deals MikxIMUM AcCYCLIC SUBGRAPH, the
analysis of 3-HTTING-SET in Wahlstrom’s PhD Thesis [35] and the amortized analybisubic vertex
cover by Chen, Kanj and Xia [12]. This paper contributes is thpic. Let us emphasize the difference
to the, say, non-parameterizbtbasure & Conqueand to this case. Usually if a measurewhich is
used to derive an upper bound of the farfil, is decreased to zero then we immediately have a solution.
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(B1) : (1—wb, (l—wf)-l-j wb—l-l—wb)

(B2) a) D=2 (1 —@p)+ 1 — ).

(B2) b)/c) D (=@, 1 +min{l — @7, dp} + 1 —@p).

(B3) a) (1=, 1+ min{@wp, 1 —wp}+1—0r+1—dp,
fli-Q—wp)+ fri-p+1—Op+1—wp+1).

(B3) b)/c) D —wp 1+ o+ @+ 1 — @y,

co(x1) # a1 Op+ fli- (L= @) + friwy + 1 —@p + 2).

(B3) b)/c) D =@y, 1+ fry @ + max{0,1 — frl} - (1 —@p) +@p + 1 — Oy,

co(z1) = a1 Wy + fli-(L—=@f)+ fri-op+1—ap +1).

(B4) (=@ 4 fro-op+ flo-(1—@f) + 1 —dp + 1,
(:Jb—|—fll-(1—@f)—|—f7"1-(:)b+1+1—(:)b.

(B5) D=2+ 11—+ (fri+ fro) - @5+

(max{0,1 — fr1} + max{0,1 — fra}) - (1 — @y),
24+ 1—wp+ fla- (1 —wp) + fra - wp,
Wp+1 =@+ 1+ flo- (1 —@f) + fro - @)

Tab. 3: The modified branching vectors in the different cases of oatyais.

Almost all time this is quite clear because then the instaspealynomial-time solvable. Now if the pa-
rameterized measurg () is smaller than zero then in general a hard sub-instanceimemalso x(G)

has been decreased due to producing floating leaves, whachoamattached to the tree yet. Thus, it is
crucial to have Lemma 10, which ensures thatleaf spanning tree can be indeed constructed. Beyond
that, it is harder to show that no reduction rules ever irgge&’). As vertices which have been counted
already partly (e.g., because they belong ta_FBN) can be deleted;(G) can even increase temporally.
Concerning the traditional approach this is a straightvéod task and is hardly ever mentioned. It is still

a challenge to find further parameterized problems whegg Hay, parameterized Measure & Conquer
paradigm can be applied.

As there is a linear kernel [16] we can first kernelize the trgraph in polynomial time. The kernel
size is no more thaB.75k. Thus, we can run our algorithm on the kernel, which yieldaraning time
upper-bound of)(3.4575% + poly(n)). Notice that the right choice fav; andw, is quite crucial. For
example, setting); = w, = 0.5 only shows a running time upper-bound®f (3.57%). To find these
beneficial values, a local search procedure was executedomputer. It is worth pointing out that our
algorithm is quite explicit. This means that its statemertbisome extent lengthy but on the other hand
easier to implement. The algorithm does not use compactansttical expressions which might lead to
ambiguities in the implementation process.

Final Remarks A preliminary version of this paper appeared in [29]. We likghank the referees for
their scholarly work.
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