Congruence successions in compositions

Abstract : A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.327--338
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01179220
Contributeur : Hélène Lowinger <>
Soumis le : mercredi 4 novembre 2015 - 14:36:19
Dernière modification le : jeudi 7 septembre 2017 - 01:03:40
Document(s) archivé(s) le : vendredi 5 février 2016 - 11:29:11

Fichier

2486-8808-1-PB_V2.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01179220, version 1

Collections

Citation

Toufik Mansour, Mark Shattuck, Mark Wilson. Congruence successions in compositions. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.327--338. 〈hal-01179220〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

108