Descents after maxima in compositions

Abstract : We consider compositions of n, i.e., sequences of positive integers (or parts) (σi)i=1k where σ1+σ2+...+σk=n. We define a maximum to be any part which is not less than any other part. The variable of interest is the size of the descent immediately following the first and the last maximum. Using generating functions and Mellin transforms, we obtain asymptotic expressions for the average size of these descents. Finally, we show with the use of a simple bijection between the compositions of n for n>1, that on average the descent after the last maximum is greater than the descent after the first.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.61--72
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01179223
Contributeur : Hélène Lowinger <>
Soumis le : mercredi 22 juillet 2015 - 09:15:34
Dernière modification le : jeudi 7 septembre 2017 - 01:03:41
Document(s) archivé(s) le : vendredi 23 octobre 2015 - 10:25:31

Fichier

dmtcs-16-1-4.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01179223, version 1

Collections

Citation

Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher. Descents after maxima in compositions. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.61--72. 〈hal-01179223〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

94