
HAL Id: hal-01181135
https://hal.inria.fr/hal-01181135v3

Submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Resource aggregation for task-based Cholesky
Factorization on top of heterogeneous machines

Terry Cojean, Abdou Guermouche, Andra Hugo, Raymond Namyst,
Pierre-André Wacrenier

To cite this version:
Terry Cojean, Abdou Guermouche, Andra Hugo, Raymond Namyst, Pierre-André Wacrenier. Re-
source aggregation for task-based Cholesky Factorization on top of heterogeneous machines. Het-
eroPar’2016 worshop of Euro-Par, Aug 2016, Grenoble, France. 2016. <hal-01181135v3>

https://hal.inria.fr/hal-01181135v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Resource aggregation for task-based Cholesky
Factorization on top of heterogeneous machines ?

T. Cojean1, A. Guermouche1, A. Hugo2, R. Namyst1, P.A. Wacrenier1

1 INRIA, LaBRI, University of Bordeaux, Talence, France
firstname.lastname@inria.fr
2 University of Uppsala, Sweden

andra.hugo@it.uu.se

Abstract. Hybrid computing platforms are now commonplace, featur-
ing a large number of CPU cores and accelerators. This trend makes
balancing computations between these heterogeneous resources perfor-
mance critical. In this paper we propose aggregating several CPU cores
in order to execute larger parallel tasks and thus improve the load balance
between CPUs and accelerators. Additionally, we present our approach
to exploit internal parallelism within tasks. This is done by combining
two runtime systems: one runtime system to handle the task graph and
another one to manage the internal parallelism. We demonstrate the rele-
vance of our approach in the context of the dense Cholesky factorization
kernel implemented on top of the StarPU task-based runtime system.
We present experimental results showing that our solution outperforms
state of the art implementations.

Keywords: Multicore; accelerator; GPU; heterogeneous computing; task DAG;
runtime system; dense linear algebra; Cholesky

1 Introduction

Due to recent evolution of High Performance Computing architectures toward
massively parallel heterogeneous multicore machines, many research efforts have
been devoted to the design of runtime systems able to provide programmers with
portable techniques and tools to exploit such hardware complexity. The avail-
ability of mature implementations of task based runtime systems (e.g. OpenMP
or Intel TBB for multicore machines, PaRSEC [6], Charm++ [12], KAAPI [9],
StarPU [4] or StarSs [5] for heterogeneous configurations) has allowed program-
mers to rely on dynamic schedulers and develop powerful implementations of
parallel libraries (e.g. Intel MKL3, DPLASMA [7]).

However one of the main issues encountered when trying to exploit both
CPUs and accelerators is that these devices have very different characteristics

? This work is supported by the French National Research Agency (ANR), under the
grant ANR-13-MONU-0007

3 https://software.intel.com/en-us/intel-mkl

https://software.intel.com/en-us/intel-mkl


and requirements. Indeed, GPUs typically exhibit better performance when ex-
ecuting kernels applied to large data sets, which we call coarse grain kernels (or
tasks) in the remainder of the paper. On the contrary, regular CPU cores typi-
cally reach their peak performance with fine grain kernels working on a reduced
memory footprint.

To work around this granularity problem, task-based applications running on
such heterogeneous platforms typically adopt a medium granularity, chosen as a
trade-off between coarse-grain and fine-grain kernels. A small granularity would
indeed lead to poor performance on the GPU side, whereas large kernel sizes may
lead to an under-utilization of CPU cores because (1) the amount of parallelism
(i.e. task graph width) decreases when kernel size increases and (2) the efficiency
of GPU increases while a large memory footprint may penalize CPU cache hit
ratio. This trade-off technique is typically used by dense linear algebra hybrid
libraries [14,2,7]. The main reason for using a unique task granularity in the
application lies in the complexity of the algorithms dealing with heterogeneous
task granularities even for very regular applications like dense linear libraries.
However some recent approaches relax this constraint and are able to split coarse-
grain tasks at run time to generate fine-grain tasks for CPUs [17].

The approach we propose in this paper to tackle the granularity problem is
based on resource aggregation: instead of dynamically splitting tasks, we rather
aggregate resources to process coarse grain tasks in a parallel manner on the
critical resource, the CPU. To deal with Direct Acyclic Graphs (DAGs) of parallel
tasks, we have enhanced the StarPU [4,10] runtime system to cope with parallel
tasks, the implementation of which relies on another parallel runtime system
(e.g. OpenMP). This approach allows us to delegate the division of the kernel
between resources to a specialized library. We illustrate how state of the art
scheduling heuristics are upgraded to deal with parallel tasks. Although our
scheme is able to handle arbitrary clusters, we evaluate our solution with fixed-
size ones. We show that using our solution for a dense Cholesky factorization
kernel outperforms state of the art implementations to reach a peak performance
of 4.6 Tflop/s on a platform equipped with 24 CPU cores and 4 GPU devices.

2 Related Work

A number of research efforts have recently been focusing on redesigning HPC ap-
plications to use dynamic runtime systems. The dense linear algebra community
has massively adopted this modular approach over the past few years [14,2,7]
and delivered production-quality software relying on it. For example, the MAGMA

library [2], provides Linear Algebra algorithms over heterogeneous hardware and
can optionally use the StarPU runtime system to perform dynamic scheduling
between CPUs and GPUs, illustrating the trend toward delegating scheduling to
the underlying runtime system. Moreover, such libraries often exhibit state-of-
the-art performance, resulting from heavy tuning and strong optimization efforts.
However, these approaches require that accelerators process a large share of the
total workload to ensure a fair load balancing between resources. Additionally,



all these approaches rely on an uniform tile size, consequently, all tasks have the
same granularity independently from where they are executed leading to a loss
of efficiency of both the CPUs and the accelerators.

Recent attempts have been made to resolve the granularity issue between reg-
ular CPUs and accelerators in the specific context of dense linear algebra. Most
of these efforts rely on heterogeneous tile sizes [15] which may involve extra
memory copies when split data need to be coalesced again [11]. However the de-
cision to split a task is mainly made statically at submission time. More recently,
a more dynamic approach has been proposed in [17] where coarse grain tasks
are hierarchically split at runtime when they are executed on CPUs. Although
this paper successes at tackling the granularity problem, the proposed solution is
specific to linear algebra kernels. In the context of this paper, we tackle the gran-
ularity problem with the opposite point of view and a more general approach:
rather than splitting coarse grained tasks, we aggregate computing units which
cooperate to process the task in parallel. By doing so, our runtime system does
not only support sequential tasks but also parallel ones.

However, calling simultaneously several parallel procedures is a difficult mat-
ter because usually they are not aware of the resource utilization of one another
and they may thus oversubscribe threads to the processing units. This issue has
been first tackled within the Lithe framework [13] a resource sharing manage-
ment interface that defines how threads are transferred between parallel libraries
within an application. This contribution suffered from the fact that it does not
allow to dynamically change the number of resources associated with a parallel
kernel. Our contribution in this study is a generalization of a previous work [10],
where we introduced the so-called scheduling contexts which aim at structuring
the parallelism for complex applications. Actually, our runtime system is able to
cope with several flavors of inner parallelism (OpenMP, Pthreads, StarPU) si-
multaneously. In this paper, we showcase the use of OpenMP to manage internal
task parallelism.

3 Background

We integrate our solution to the StarPU runtime system as it provides a flexi-
ble platform to deal with heterogeneous architectures. StarPU [4] is a C library
that provides programmers with a portable interface for scheduling dynamic
graphs of tasks onto a heterogeneous set of processing units called workers in
StarPU (i.e. CPUs and GPUs). The two basic principles of StarPU are firstly
that tasks can have several implementations, for some or each of the various
heterogeneous processing units available in the machine, and secondly that nec-
essary data transfers to these processing units are handled transparently by the
runtime system. StarPU tasks are defined as multi-version kernels, gathering the
different implementations available for CPUs and GPUs, associated to a set of
input/output data. To avoid unnecessary data transfers, StarPU allows multi-
ple copies of the same registered data to reside at the same time in different
memory locations as long as it is not modified. Asynchronous data prefetching



is also used to hide memory latencies allowing to overlap memory transfers with
computations when possible.

StarPU is a platform for developing, tuning and experimenting with various
task scheduling policies in a portable way. Several built-in schedulers are avail-
able, ranging from greedy and work-stealing based policies to more elaborated
schedulers implementing variants of the Minimum Completion Time (MCT) pol-
icy [16]. This latter family of schedulers is based on auto-tuned history-based
performance models that provide estimations of the expected lengths of tasks
and data transfers. The performance model of StarPU also supports the use of
regressions to cope with dynamic granularities.

4 A runtime solution to deal with nested parallelism

We introduce a set of mechanisms which aim at managing nested parallelism
(i.e. task inner parallelism) within the StarPU runtime system. We consider the
general case where a parallel task may be implemented on top of any runtime
system. We present in Figure 1a the standard architecture of a task-based run-
time system where the task-graph is provided to the runtime and the ready tasks
(in purple) are dynamically scheduled on queues associated with the underlying
computing resources. We propose a more flexible scheme where tasks may fea-
ture internal parallelism implemented using any other runtime system. This idea
is represented in Figure 1b where multiple CPU devices are grouped to form vir-
tual resources which will be referred to as clusters: in this example, each cluster
contains 3 CPU cores. We will refer to the main runtime system as the external
runtime system while the runtime system used to implement parallel tasks will
be denoted as the inner runtime system. The main challenges regarding this
architecture are: 1) how to constrain the inner runtime system’s execution to
the selected set of resources, 2) how to extend the existing scheduling strategies
to this new type of computing resources, and 3) how to define the number of
clusters and their corresponding resources. In this paper, we focus on the first
two problems since the latter is strongly related to online moldable/malleable
task scheduling problems which are out of the scope of this paper.

Firstly, we need to aggregate cores into a cluster. This is done thanks to a
simple programming interface which allows to group cores in a compact way with
respect to memory hierarchy. In practice, we rely on the hwloc framework [8],
which provides the hardware topology, to build clusters containing every com-
puting resource under a given level of the memory hierarchy (e.g. Socket, NUMA
node, L2 cache, . . . ). Secondly, forcing a parallel task to run on the set of re-
sources corresponding to a cluster depends on whether or not the inner runtime
system has its own pool of threads. On the one hand, if the inner runtime system
offers a multithreaded interface, that is to say the execution of the parallel task
requires a call that has to be done by each thread, the inner runtime system can
directly use the StarPU workers assigned to the cluster. We show in Figure 2a
how we manage internal SPMD runtime systems. In this case, the parallel task
is inserted in the local queue of each StarPU worker. On the other hand, if the



inner runtime system features its own pool of threads (e.g. as most OpenMP im-
plementations), StarPU workers corresponding to the cluster need to be paused
until the end of the parallel task. This is done to avoid oversubscribing threads
over the underlying resources. We describe in Figure 2b how the interaction is
managed. We allow only one StarPU worker to keep running. This latter called
the master worker of the cluster, is in charge of popping the tasks assigned to
the cluster by the scheduler. When tasks have to be executed, the master worker
takes the role of a regular application thread with respect to the inner runtime
system. In Figure 2b, the black threads represent the StarPU workers and the
pink ones the inner runtime system (e.g. OpenMP) threads. The master worker
joins the team of inner threads while the other StarPU threads are paused.

(a) Sequential tasks only. (b) Parallel tasks support.

Fig. 1: Managing internal parallelism within StarPU.

Depending on the inner scheduling engine, the set of computing resources
assigned to a cluster may be dynamically adjusted during the execution of a
parallel task. This obviously requires the inner scheduler (resp. runtime system)
to be able to support such an operation. For instance, parallel kernels imple-
mented on top of runtime systems like OpenMP will not allow removing a com-
puting resource during the execution of the parallel task. In this case we refer to
the corresponding parallel task as a moldable one and we consider resizing the
corresponding cluster only at the end of the task or before starting a new one.

From a practical point of view, we integrate in a callback function the specific
code required to force the inner runtime to run on the selected set of resources.
This prologue is transparently triggered before starting executing any sequence
of parallel tasks. We call this callback the prologue callback. This approach can
be used for most inner runtime systems as the programmer can provide the im-
plementation of the prologue callback and thus use the necessary functions in
order to provide the resource allocation required for the corresponding cluster.
Such a runtime should however respect certain properties: be able to be executed
on a restricted set of resources and allow the privatization of its global and static
variables. From the user point of view, provided that he has parallel implemen-



tation of his kernels, using clusters in his application is straightforward: he needs
to implement the callback and create clusters. In the experimental section, we
use this approach to force the MKL library, which relies on OpenMP, to run on
the set of resources corresponding to the clusters.

(a) multi-
threaded.

(b) OpenMP-
like.

Fig. 2: Management of the pool of
threads within a cluster.

(a) MCT. (b) cluster-
MCT.

Fig. 3: Adaptation of the MCT
scheduling strategy.

4.1 Adapting MCT and performance models for parallel tasks

As presented in Section 3, MCT is a scheduling policy implemented in StarPU.
The task’s estimated length and transfer time used for MCT decisions is com-
puted using performance prediction models. These models are based on perfor-
mance history tables dynamically built during the application execution. It is
then possible for the runtime system to predict for each task the worker which
completes it at the earliest. Therefore, even without the programmer’s involve-
ment, the runtime can provide a relatively accurate performance estimation of
the expected requirements of the tasks allowing the scheduler to take appropriate
decisions when assigning tasks to computing resources.

As an illustration, we provide in Figure 3a an example showing the behavior
of the MCT strategy. In this example, the blue task represents the one the
scheduler is trying to assign. This task has different length on CPU and GPU
devices. The choice is then made to schedule it on the CPU0 which completes it
first. We have adapted the MCT strategy and the underlying performance models
to be able to select a pool of CPUs when looking for a computing resource to
execute a task. We have thus introduced a new type of resource: the cluster
of CPUs. The associated performance model is parametrized not only by the
size and type of the task together with the candidate resource but also by the
number of CPUs forming the cluster. Thus, tasks can be assigned to a cluster
either explicitly by the user or by the policy depending on where it would finish
first. This is illustrated in Figure 3b, where the three CPUs composing our
platform are grouped in a cluster. We can see that the expected length of the
parallel task on the cluster is used to choose the resource having the minimum
completion time for the task. Note that in this scenario, we chose to illustrate a
cluster with an OpenMP-like internal runtime system.

This approach permits to deal with a heterogeneous architecture made of
different types of processing units as well as clusters grouping different sets of



processing units. Therefore, our approach is able to deal with multiple clusters
sizes simultaneously with clusters of one CPU core and take appropriate deci-
sions. Actually, it is helpful to think of the clusters as mini-accelerators. In this
work, we let the user define sets of such clusters (mini-accelerators) and schedule
tasks dynamically on top of them.

5 Experimental Results

For our evaluation, we use the Cholesky factorization of Chameleon [1], a dense
linear algebra library for heterogeneous platforms based on the StarPU run-
time system. Similarly to most task-based linear algebra libraries, Chameleon
relies on optimized kernels from a BLAS library. Our adaptation of Chameleon
does not change the high level task-based algorithms and subsequent DAG. We
simply extend the prologue of each task to allow the use of an OpenMP im-
plementation of MKL inside the clusters and manage the creation of clusters.
We call pt-Chameleon this adapted version of Chameleon that handles paral-
lel tasks. The machine we use is heterogeneous and composed of two 12-cores
Intel Xeon CPU E5-2680 v3 (@2.5 GHz equipped with 30 MB of cache each)
and enhanced with four NVidia K40m GPUs. In StarPU one core is dedicated
to each GPU, consequently we report on all figures performance with 20 cores
for the Chameleon and pt-Chameleon versions. We used a configuration for
pt-Chameleon composed of 2 clusters aggregating 10 cores each (noted 2×10), so
that the 10 cores of a CPU belong to a single cluster. In comparison, Chameleon
uses 20 sequential CPU cores on this platform. Finally, we show on all figures
the average performance and observed variation over 5 runs on square matrices.

dpotrf dtrsm dsyrk dgemm
960 1920 960 1920 960 1920 960 1920

1 core (Gflop/s) 27.78 31.11 34.42 34.96 31.52 32.93 36.46 37.27

GPU / 1 core 1.72 5.95 8.72 18.59 26.96 31.73 28.80 30.86
10 cores / 1 core 5.55 7.48 6.75 8.48 6.90 8.63 7.77 8.56

Table 1: Acceleration factor of Cholesky factorization kernels on a GPU and 10
cores compared to one core with tile size 960 and 1920.

We report in Table 1 the acceleration factors of using 10 cores or one GPU
compared to the single core performance for each kernel of the Cholesky factor-
ization. We conduct our evaluation using MKL for the CPUs and CuBLAS (resp.
MAGMA) for the GPUs. This table highlights a sublinear scalability of using 10
cores compared to using 1 core. For example on our best kernel dgemm we ac-
celerate the execution by a factor of 7.77 when using 10 cores and this increases
to 8.56 with a tile size of 1920. Despite this, we can see that relying on sequential
kernels worsens the performance gap between the CPUs and GPUs while relying
on clusters makes the set of computing resources more homogeneous. We can
obtain an acceleration factor of GPU against CPUs by dividing the second line
by the third one. For example, the performance gap for the dgemm kernel with



a tile size of 960 is ' 29 when using 1 core compared to a GPU whereas it is
28.80/7.77 ' 3.7 when using 10 cores compared to a GPU. As a consequence,
if 28 independent dgemm of size 960 are submitted on computer of 10 cores
and a GPU, the Chameleon scheduler assigns all the tasks to the GPU whereas
pt-Chameleon assigns 6 tasks to the 10 core cluster and 22 tasks to GPUs.
Another important aspect which can compensate some loss in efficiency is the
pt-Chameleon ability to accelerate the critical path. Indeed, a cluster of 10 cores
can execute the dpotrf kernel on a tile size of 960 three times faster than on a
GPU. The performance is also almost the same for the dtrsm task.

Tile: 960 Tile: 1920

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ●
● ●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

200

400

600

800

1000

1200

1400

1600

1800

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
F

lo
p/

s

Type ● Chameleon pt−Chameleon Bound Bound Real

Fig. 4: Comparison of the pt-Chameleon and Chameleon Cholesky factorization
with computed bounds. 20 CPUs and 1 GPU are used.

We show in Figure 4 the performance of the Cholesky factorization for both
Chameleon and pt-Chameleon with multiple tile sizes and their computed make-
span theoretical lower bounds. These bounds are computed thanks to the itera-
tive bound technique introduced in [3] which iteratively adds new critical paths
until all are taken into account. As these bounds do not take communications
with GPU devices into account, they are clearly unreachable in practice. These
bounds show that pt-Chameleon can theoretically obtain better performance
than Chameleon on small to medium sized matrices. Indeed, the CPUs are un-
derutilized in the sequential tasks case due to a lack of parallelism whereas using
clusters lowers the amount of tasks required to feed the CPU cores. The 5K
matrix order point shows a difference of performance of 600 Gflop/s, this is close
to the obtainable performance on these CPUs. For both tile sizes on large ma-
trices (e.g. 40K), the Chameleon bound is over the pt-Chameleon one. This is
due to the better efficiency of the sequential kernels since the parallel kernels do
not exhibit perfect scalability, allowing the CPUs to achieve better performance
per core in the sequential case. We observe that for a coarser kernel grain of
1920, the maximum achievable performance is higher, mainly thanks to a better
kernel efficiency on GPUs with this size. For dgemm kernel we can gain close



to 100 Gflop/s (or 10%). We can also note that the gap between Chameleon

and pt-Chameleon bound decreases slightly as we increase the tile size to 1920
thanks to a relatively better gain in efficiency per core compared to the sequen-
tial one. Additionally, the real executions are underneath the theoretical bounds.
This is due to the fact that transfer time is not taken into account in the bounds.
Moreover, the online MCT scheduler can exaggeratedly favor GPUs because of
their huge performance bonus in the Chameleon case as was shown in [3]. Fi-
nally, this figure highlights a constantly superior performance of pt-Chameleon
over Chameleon which achieves up to 65% better performance on a matrix size
of 11K for the 960 tile size case and up to 100% better performance on matrices
lower than 10K. On those matrix sizes, real pt-Chameleon execution is able to
go over the theoretical bound of Chameleon which demonstrates the superiority
of our approach.

NGPUs: 1 NGPUs: 2 NGPUs: 3 NGPUs: 4

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
500

1000
1500
2000
2500
3000
3500
4000
4500

T
ile_S

ize: 960
T

ile_S
ize: 1920

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K 5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
F

lo
p/

s

Type Chameleon pt−Chameleon

Fig. 5: Performance of the Cholesky factorization with pt-Chameleon and
Chameleon with varying number of GPUs and task granularity.

We report in Figure 5 the performance behavior of our implementation of
the Cholesky factorization using the pt-Chameleon framework, compared to
the existing Chameleon library. When looking at medium sized matrices we ob-
serve that pt-Chameleon is able to achieve significantly higher performance than
Chameleon across all test cases. On those matrices, the Chameleon library has
some performance variability. This is mainly due to bad scheduling decisions
regarding tasks on the critical path in Chameleon. Indeed, if an important task
is wrongly scheduled on a CPU such as a dpotrf, we may lack parallelism for
a significant period of time. Whereas in the pt-Chameleon case using paral-
lel tasks even accelerates the critical path due to a better kernel performance,
which makes the approach less sensitive to bad scheduling decisions, lowering
pt-Chameleon’s variance. Both Chameleon and pt-Chameleon showcase a good



scalability when increasing the number of GPUs. For example the peak for 1 GPU
with a tile size of 960 is at 1.6 Tflop/s and for 2 GPUs it goes up to 2.6 Tflop/s.
This improvement is as expected since 1 Tflop/s is the performance of a GPU
on this platform with the dgemm kernel. Chameleon scales slightly less than
pt-Chameleon with a coarse task grain size of 1920. The gap between the two
versions increases when increasing the number of GPUs. As shown previously,
the scheduler can schedule too many tasks on the GPUs leading to a CPU under-
utilization with such a high factor of heterogeneity.

Another factor is the cache behavior of both implementations. Indeed, each
processor benefits of 30MB cache and by using one cluster per processor instead
of 10 independent processing units we lower by 10 the working set size. Since
a tile of 960 weights 7MB whereas a tile of 1920 weights 28MB we are even
able to fit entirely a 1920 tile in the LLC. This highlights another constraint:
the memory contention bottleneck. We had to explicitly use the numactl tool
to allocate pages in a round robin fashion on all 4 NUMA nodes, otherwise
the behavior of Chameleon was very irregular. In fact, even with the interleave
setting, we observed that some compute intensive kernels such as dgemm could
become more memory bound for the Chameleon case with a matrix size of 43K.
To investigate this issue we conducted an experiment using Intel VTune where
we allocated the complete matrix on one NUMA node thanks to the numactl
tool. We saw that for Chameleon 59% of the dgemm kernels were bounded by
memory, whereas for pt-Chameleon only 13% were bounded by memory. We
also observed over two times less cache misses on our pt-Chameleon version.

Tile: 960 Tile: 1920

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5K 15K 25K 35K 45K 5K 15K 25K 35K 45K
Matrix size

G
F

lo
p/

s

Type
●●●●●●●●● Chameleon

DPLASMA
MAGMA
pt−Chameleon

pt−Chameleon c

Fig. 6: Comparison of the constrained pt-Chameleon with baseline Chameleon,
MAGMA (default parameters and multithreaded MKL) and hierarchical DPLASMA
(internal blocking of 192 (left) and 320 (right)).

Finally, in Figure 6 we compare pt-Chameleon to multiple dense linear al-
gebra reference libraries: MAGMA, Chameleon and DPLASMA using the hierarchi-
cal granularity scheme presented in [17]. We make use of a constrained version
(2×10c) where the dpotrf and dtrsm tasks are restricted to CPU workers. On



this figure, the MAGMA and DPLASMA versions use the 24 CPU cores. This strategy
is comparable to what is done in [17] where only dgemm kernels are executed on
GPU devices. We observe that using the regular MCT scheduler for small ma-
trices leads to better performance since in the constrained version the amount
of work done by CPUs is too large. However, when we increase the matrix size,
the constrained version starts to be efficient and leads to a 5% increase in per-
formance on average, achieving a peak of 4.6 Tflop/s on our test platform. We
see that the absolute peak is obtained by pt-Chameleon and outperforms all the
other implementations.

6 Conclusion

One of the biggest challenge raised by the development of high performance
task-based applications on top of heterogeneous hardware lies in coping with
the increasing performance gap between accelerators and individual cores. One
way to address this issue is to use multiple tasks’ granularities, but it requires
in-depth modifications to the data layout used by existing implementations.

We propose a less intrusive and more generic approach that consists in re-
ducing the performance gap between processing units by forming clusters of
CPUs on top of which we exploit tasks’ inner parallelism. Performance of these
clusters of CPUs can better compete with the one of powerful accelerators such
as GPUs. Our implementation extends the StarPU runtime system so that the
scheduler only sees virtual computing resources on which it can schedule paral-
lel tasks (e.g. BLAS kernels). The implementation of tasks inside such clusters
can virtually rely on any thread-based runtime system, and runs under the su-
pervision of the main StarPU scheduler. We demonstrate the relevance of our
approach using task-based implementations of the dense linear algebra Cholesky
factorization. Our implementation is able to outperform the MAGMA, DPLASMA and
Chameleon state-of-the-art dense linear algebra libraries while using the same
task granularity on accelerators and clusters.

In the near future, we intend to further extend this work by investigating how
to automatically determine the optimal size of clusters. Preliminary experiments
show that using clusters of different sizes sometimes leads to significant perfor-
mance gains. Thus, we plan to design heuristics that could dynamically adapt
the number and the size of clusters on the fly, based on statistical information
regarding ready tasks.

Acknowledgment We are grateful to Mathieu Faverge for his help for the compar-
ison of DPLASMA and pt-Chameleon. Experiments presented in this paper were
carried out using the PLAFRIM experimental testbed.

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S., To-
mov, S.: A hybridization methodology for high-performance linear algebra software
for gpus. GPU Computing Gems, Jade Edition 2, 473–484 (2011)



2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief,
H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series 180(1)
(2009)

3. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are Static Schedules
so Bad ? A Case Study on Cholesky Factorization. In: Proceedings of IPDPS’16
(2016)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurr.
Comput. : Pract. Exper. 23, 187–198 (Feb 2011)

5. Ayguadé, E., Badia, R., Igual, F., Labarta, J., Mayo, R., Quintana-Ort́ı, E.: An
Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In: Euro-Par 2009. pp. 851–862 (2009)

6. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing. Parallel
Computing 38(Issues 1), 37 – 51 (2012)

7. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Luszczek, P., Dongarra, J.:
Dense linear algebra on distributed heterogeneous hardware with a symbolic dag
approach. Scalable Computing and Communications: Theory and Practice (2013)

8. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: A generic framework for managing hard-
ware affinities in HPC applications. In: Proceedings of the 2010 18th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing. pp. 180–
186. PDP ’10, IEEE Computer Society, Washington, DC, USA (2010), http:

//dx.doi.org/10.1109/PDP.2010.67
9. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-gpu and multi-

cpu parallelization for interactive physics simulations. In: Euro-Par 2010 - Parallel
Processing, vol. 6272, pp. 235–246 (2010)

10. Hugo, A., Guermouche, A., Wacrenier, P., Namyst, R.: Composing multiple starpu
applications over heterogeneous machines: A supervised approach. IJHPCA 28(3),
285–300 (2014)

11. Kim, K., Eijkhout, V., van de Geijn, R.A.: Dense matrix computation on a het-
erogenous architecture: A block synchronous approach. Tech. Rep. TR-12-04, Texas
Advanced Computing Center, The University of Texas at Austin (2012)

12. Kunzman, D.M., Kalé, L.V.: Programming heterogeneous clusters with accelera-
tors using object-based programming. Scientific Programming 19(1), 47–62 (2011)

13. Pan, H., Hindman, B., Asanović, K.: Composing parallel software efficiently with
lithe. SIGPLAN Not. 45, 376–387 (June 2010), http://doi.acm.org/10.1145/

1809028.1806639
14. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., van de Geijn, R.A., Zee, F.G.V., Chan,

E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM
Trans. Math. Softw. 36(3) (2009)

15. Song, F., Tomov, S., Dongarra, J.: Enabling and scaling matrix computations on
heterogeneous multi-core and multi-gpu systems. In: Proceedings of ICS’12. pp.
365–376 (2012)

16. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. Parallel and Distributed Systems,
IEEE Transactions on 13(3), 260–274 (Mar 2002)

17. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical dag
scheduling for hybrid distributed systems. In: 29th IEEE International Parallel &
Distributed Processing Symposium (IPDPS). Hyderabad, India (May 2015)

http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1109/PDP.2010.67
http://doi.acm.org/10.1145/1809028.1806639
http://doi.acm.org/10.1145/1809028.1806639

	Resource aggregation for task-based Cholesky Factorization on top of heterogeneous machines 

