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Projection for Nested Word Automata

Speeds up XPath Evaluation on XML Streams

Tom Sebastian1 and Joachim Niehren2

1 Innovimax & Links team of Inria Lille & Cristal lab
2 Inria & Links team of Inria Lille & Cristal lab

Abstract. We present an evaluator for navigational XPath on Xml

streams with projection. The idea is to project away those parts of an
Xml stream that are irrelevant for evaluating a given XPath query. This
task is relevant for processing Xml streams in general since all Xml

standard languages are based on XPath. The best existing streaming
algorithm for navigational XPath queries runs nested word automata.
Therefore, we develop a projection algorithm for nested word automata,
for the first time to the best of our knowledge. It turns out that projec-
tion can speed up the evaluation of navigational XPath queries on Xml

streams by a factor of 4 in average on the usual XPath benchmarks.

1 Introduction

Projection is most relevant for efficient Xml processing algorithms, as shown for
in-memory evaluators for XQuery in [11] and for a fragment of in XPath [10].
The projection algorithm for XQuery runs in Saxon [7], today’s most used Xml

processing tool. Projection algorithms for the in-memory evaluation of Xslt are
missing though.

The objective of the present paper is to initiate the development of projection
algorithms for processing Xml streams. Given that a single program written in
one of the Xml standards XQuery, Xslt, or XProc contains a collection of
XPath queries, we are interested in the evaluation of a collection of XPath

queries on a single input stream. The parsing time can be shared between many
XPath queries, and thus be should counted seperately. Therefore, we are mainly
interested in the parsing-free time for query evaluation. Note however, that the
parsing-free time for a single query is often dominated by the parsing time.

We will restrict ourselves to projection for navigational XPath queries, since
these are fundamental to all others. For instance, in order to check whether the
root of a tree has at least 5 a-children, all other children of the root can be
projected. The computation of the projection still requires to read the entire
input tree, but the time for this can be shared similarly to the parsing time.

The most efficient evaluation algorithm for navigational XPath queries on
Xml streams so far was presented in [2]. Similarly to many recent evaluation
algorithms for XPath on Xml streams [9,12,6], it is based on the compilation
of navigational XPath queries to nested word automata (Nwas) [1]. Given that
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Xml streams are nested words, Nwas provide a canonical formalism for defining
algorithms on Xml streams. This leads to highly efficient algorithms based on
first principles as argued in [2]: In particular, one can rely on the nondeterminism
of Nwas to express XPath queries with recursive axes, such as “descendant”
or “following”, and then use on-the-fly determinization for their evaluation. The
evaluation of an XPath query can then be reduced to running an Nwa on all
possible answer candidates. Furthermore, the runs of multiple answer candidates
in the same state can be shared.

Projection for finite automata is well known [5,10]. It amounts to project
away all letters of the input word that do not change the state. Projection for
Nwas is more tedious, since such automata have a stack by which they can pass
information from opening tags to corresponding closing tags. Therefore, one can-
not simply project an opening tag away without taking care of the corresponding
closing tag. Our idea is that a projected nested word should contain jump sym-
bols i. . . for projected factors, where the integer i stands for the excess of the
factor, i.e., the difference between the number of opening and closing tags. We
present projection nested word automata (PNwas), a kind of mixed pushdown
and counting automata, that input projected nested words which beside others
contain integers as letters. These integers allow the automaton to compute the
depth of the current node of the tree at any time, and also the excess of the last
jump. Conversely, a projection of a nested word with respect to a given Nwa can
be computed by any corresponding PNwa. It may be surprising, but it turns out
there may exist different PNwas with maximal projection for the same Nwa.
Therefore, our projection algorithm has to make its choices.

We then lift Nwa projection to the evaluation of navigationalXPath queries
on Xml streams. It turns out that the parsing-free time for query answering
is reduced by a factor of 4 on average on the usual XPathMark benchmark
compared to the previously existing algorithm [2].
Outline. In Section 2, we recall Nwas and their usage for XPath evaluation
on Xml streams. In Section 3, we introduce PNwas. In Section 4, we introduce
notions of irrelevant labels and prefixes of nested words for states of Nwas. In
Section 5, we use them to project Nwas to PNwas. In Section 6, we present our
experimental results for XPath evaluation onXml streams. The appendix of the
present paper at hal.inria.fr/hal-01182529 contains additional examples of
PNwas, an extension of Nwa projection for node selection, and the collection
of queries used in our experiments.

2 Nested Word Automata

We recall the definition of Nwas, while pointing out the close relationship be-
tween nested words and Xml streams.

Let Σ be a finite alphabet. Let PΣ be the set of parenthesis with labels in Σ,
that is the set of opening tags 〈a〉 and closing tags 〈/a〉 where a ∈ Σ. A nested
word over Σ is a word over PΣ which is well-balanced, so that any opening tag
〈a〉 can be assigned to a unique corresponding closing tag 〈/a〉, and vice versa,
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Fig. 1: An unranked tree.

〈c〉 〈a〉 〈a〉 〈a〉 〈c〉 〈/c〉 〈/a〉 〈/a〉

〈c〉 〈b〉 〈/b〉
〈a〉 〈/a〉 〈/c〉

〈b〉 〈/b〉 〈/a〉 〈/c〉

Fig. 2: The corresponding nested word is an
Xml stream.

and such that the initial opening tag of the word corresponds to the closing tag
at its end. Our nested words are more restricted than in the general case [1], in
that internal symbols are omitted, corresponding opening and closing tags must
have the same label, and initial opening tags cannot be closed before the end.

An Xml stream is a nested word that is obtained by linearizing an unranked
tree in document order. This is a strong simplification of the Xml data model,
in that we ignore data values (internal symbols) and the different types of nodes
(text, element, attribute, etc). An example of an unranked tree is given in Fig. 1.
The Xml stream obtained by linearizing this unranked tree into a nested word
is given in Fig. 2. It should be mentioned that we cannot assume any a priori
knowledge on the set of tags of an Xml document in practice (where no Xml

schemas are available). Instead, the finite alphabet Σ is determined by the tags
appearing in the XPath query of interest [2].

An Nwa is a pushdown automaton on nested words [1], whose stack is “vis-
ible” in the sense that only a single symbol is pushed at opening events and
popped at closing events. Here we assume that Nwas are early [2], so that
whenever a final state is reached, any continuation completing the nested word
will be accepted. More formally, an (early) Nwa is a tuple A = (Σ,Q, I, F, Γ,R)
where Σ is a finite alphabet, Q a finite set of states with subsets I, F ⊆ Q of
initial and final states, Γ a finite set of stack symbols, and R is a set of transition
rules of the following two types, where q, q′ ∈ Q, a ∈ Σ, and γ ∈ Γ :

Open: q
〈a〉↓γ
−−−→ q′. When processing an opening tag 〈a〉, γ is pushed onto the

stack, and the state is changed from q to q′.

Close: q
〈/a〉↑γ
−−−−→ q′. When processing a closing tag 〈/a〉, γ is popped from the

stack and the state is changed from q to q′.

A configuration of an Nwa is a word in QΓ ∗ consisting of a state q ∈ Q and a
stack S ∈ Γ ∗. A run of an Nwa on a nested word w ∈ P ∗

Σ is a function r that
maps prefixes w′ of w to configurations. The initial configuration must contain
an initial state and the empty stack, i.e. r(ǫ) ∈ I. The Nwa then rewrites this
configuration: for any prefix w′p of w, r(w′p) is produced from r(w′) by applying
some rules consuming tag p ∈ PΣ . A run on w is successful if r(w) ∈ F , i.e. if
it reaches at the end a final state and the empty stack. Since we assume early
Nwas, any run reaching a configuration with a final state on some prefix of a



q1

i-label∅
q2

i-label{b,c}

q3
i-label{a}

i-tree{c}\{a}

q4

i-labelΣ
qrej

i-label∅

〈Σ〉 ↓ α
〈/c〉 ↑ γ
〈a〉 ↓ α

〈/a〉 ↑ α
〈c〉 ↓ γ

〈b〉 ↓ α

〈{b, c}〉 ↓ β′

〈/{b, c}〉 ↑ β′
〈a〉 ↓ β
〈/a〉 ↑ β 〈Σ〉 ↓ δ

〈/Σ〉 ↑ δ
〈/Σ〉 ↑ α
〈/Σ〉 ↑ β
〈/Σ〉 ↑ β′

〈/Σ〉 ↑ α

Fig. 3: A deterministic Nwa over Σ = {a, b, c} for XPath filter [//a/b].

nested word can always be continued into a successful run. The language L(A)
of an Nwa A is the set of all nested words that permit a successful run by A.

An Nwa is called deterministic if it is deterministic as a pushdown automa-
ton. Note that Nwas can always be determinized [1] in contrast to more gen-
eral pushdown automata. Our streaming algorithms will determinize Nwas con-
structed from XPath expressions on the fly (as explained in [2]), so that we will
only have to project deterministic Nwas but this while creating them on the fly.

An example for a deterministic Nwas is given in Fig. 3. It defines the XPath

filter [//a/b] which accepts all Xml trees that contain some a-descendant with
a b-child. Rules containing label sets represent sets of rules, one for each label.
Node selection XPath queries can be compiled to deterministic Nwas in a sim-
ilar manner [2] by adding variables to the alphabet. This requires some minor
extensions for Nwa projection which are out of the scope of the present paper.

3 Projection NWAs

We next introduce projected nested words. Let N be the set of natural numbers,
N0 = N⊎{0}, and Z the set of integers. For any unranked tree, we are interested
in the binary node relations child ch, descendant ch+, n-th grand parents ch−n

where n ∈ N, descendants of n-th grand parents ch−n/ch+, children of n-th
grand parents ch−n/ch, and stay at self. So let:

Rels = {ch, ch+, ch−n, ch−n/ch+, ch−n/ch, self | n ∈ N}.

A projected nested word is a word whose letters are jump symbols i. . . where
i ∈ Z and jump targets p@r where p ∈ PΣ and r ∈ Rels . We write P ...

Σ for the
set of all these letters. We assume that any jump target is proceeded by a jump
symbol that indicates the excess of the jump, that is the depth difference in the
tree or equivalently, the difference of the numbers of opening and closing tags
in the nested word. We also assume that projected nested words are well-nested
up to jumping.

Two examples for projected nested words are given in Fig. 4. Both are valid
descriptions of the nested word in Fig. 2: pw

1
projects to the letters drawn

in blue, while pw2 projects to the letters drawn in green. As we will see, both
projections can be obtained from theNwa in Fig. 3. Note that the initial opening
tag is always kept for technical reasons. Except of this, both projections are



pw
1
: for all a-nodes without an a-parent and all non-a-children of a-nodes keep the
opening and closing tags, until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 2. . . 〈c〉@ch+ 0. . . 〈/c〉@self −2. . . 〈c〉@ch−3/ch+

0. . . 〈a〉@ch+ 0. . . 〈/a〉@self 0. . . 〈/c〉@ch−1 0. . . 〈b〉@ch−1/ch+

pw2: for all a-nodes and all b-children of a-nodes keep the opening and closing tags,
until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈/a〉@self
0. . . 〈/a〉@ch−1 1. . . 〈a〉@ch−1/ch+ 0. . . 〈/a〉@self −1. . . 〈b〉@ch−2/ch

Fig. 4: Two projected nested words describing the nested word in Fig. 2.

maximal, in that no further tags can be projected away: they just preserve
enough information for deciding whether the original nested word satisfies the
filter [//a/b]. Nevertheless, none of these two projections is more general than
the other. The green projection pw2 has the advantage to keep only tags with
letters occurring in the XPath filter [//a/b]. The blue projection pw

1
, has the

advantage to keep fewer of these tags, but therefore, it also keeps some others.

The blue projection pw
1
starts with 〈c〉, meaning that any matching nested

word must start with 〈c〉. The next factor 0. . . 〈a〉@ch+ describes a nested word
with excess 0 that is followed by 〈a〉 in descendant position, i.e., by the opening
tag of an a-child of the root. The next factor 2. . . 〈c〉@ch+ describes a nested
word with excess 2 followed by 〈c〉 opening a descendant. Then 0. . . 〈/c〉@self
requires to jump with excess 0 to the closing tag 〈/c〉 of the same node. Next,
−2. . . 〈c〉@ch−3/ch+ asks to jump with excess −2 to an opening tag 〈c〉 of a
descendant of a grand-grand-grand-parent, etc.

We next introduce PNwas as a mixture of a pushdown and a counting au-
tomaton, that receive projected nested words as input. The counting serves for
updating the depths of nodes when jumping, so that the depth of the current
node can always be deduced from the current stack. Whenever jumping over a
projected factor, the excess of this factor is pushed. This is an integer that is
popped when trying to close the jump.

Definition 1 A PNwa is a tuple A = (Σ,Q, I, F, Γ,R) like an Nwa but with
different kinds of transition rules: given a ∈ Σ, γ ∈ Γ , and q, q′ ∈ Q, there are
rules of the following types in R, for changing the state from q to q′.

Open: q
〈a〉 ↓γ
−−−−→ q′ Like for Nwas.

Close: q
〈/a〉 ↑γ
−−−−→ q′. Like for Nwas.

Jump to a child or a descendant: q
z...〈a〉@r ↓z↓γ
−−−−−−−−→

∀z≥0
q′, where r ∈ {ch, ch+}.

When r = ch then z must be 0, and we jump to the opening tag of an a-child
and push first 0 and then γ onto the stack. When r = ch+ then we jump over



z descendants to the opening tag of an a-descendant, and push first z and

then γ onto the stack. For short we denote this transition as q
ju(〈a〉,r,γ)
−−−−−−−→ q′.

Rejump to another child or descendant: q
z...〈a〉@ch−(z′+1)/r ↑z′↓z+z′↓γ
−−−−−−−−−−−−−−−−−−−→

∀z,z′. z′≥0,z+z′≥0
q′,

where r ∈ {ch, ch+}.
While trying to close a jump from some grand parent to some node one can
rejump to another opening a-tag of a child or a descendant of the same grand
parent. The excess of the jump to the first node z′ on the stack is updated to
the excess of the second node z+ z′. Furthermore, γ is pushed. For short, we

write this transition as q
reju(〈a〉,r,γ)
−−−−−−−−→ q′.

Jump to the closing tag of the self node: q
0...〈/a〉@self↑γ
−−−−−−−−−→ q′. Jump to the

closing tag of the self a-node. In this case, γ is popped from the stack.

Jump back to the jump’s origin: q
−z...〈/a〉@ch−(z+1) ↑z↑γ
−−−−−−−−−−−−−−→

∀z≥0
q′. When trying to

close a jump, one may jump back to the closing tag of the a-node where the
current jump started. The excess of −z is popped from the stack together
with the symbol γ which was pushed for the non-jumped a-node. For short

we write q
ju-back(〈/a〉,γ)
−−−−−−−−−−→ q′.

Close last jump step: q
〈/a〉 ↑z↓z−1
−−−−−−−−→

∀z>0
q′. When trying to close a jump, one may

read a closing a-tag for which the corresponding opening a-tag was jumped,
so that no stack symbol was pushed. In this case the excess of the jump on
the stack must be updated from z to z − 1.

A configuration of a PNwa is a word in Q(Γ ⊎ N0)
∗ consisting of a state in

Q and a stack in (Γ ⊎ N0)
∗. A run r of a PNwa A on a projected nested word

over Σ is a function that maps any prefix of the projected nested word to a
configuration. The run must start in some configuration with some initial state
and the empty stack, i.e., r(ǫ) ∈ I. Furthermore, for any prefix wl where l ∈ P ...

Σ ,
the configuration r(w) must be transformed into r(wl) by applying some rule
consuming letter l. A run on a projected nested word w is called successful if it
eventually reaches a configuration with a final state, i.e., if r(w′) ∈ F (Γ⊎N0)

∗ for
some prefix w′ of w. The language L(A) of a PNwa A is the set of all projected
nested words that permit a successful run on A.

In Fig. 5 we present PNwa A1 that is a projection of the Nwa in Fig. 3 for
the XPath filter [//a/b]. This automaton accepts the blue projection pw

1
in

Fig. 4 of the nested word in Fig. 2. Automaton A1 visits the opening and closing
tags of all a-nodes with no a-parent, and of all non-a-children of these a-nodes,
and jumps over all other nodes. Automaton A1 accepts when the first match
of [//a/b] arrives. In Fig. 6, we illustrate a successful run of A1 on pw

1
. The

states of configurations are placed below the tags, while the stack consists of the
labels on the subedges above the state. Edges between tags indicate their corre-
spondence. Furthermore there are edges for jumps to children and descendants,
where the excess is pushed, while jumps to the jump origin close the jump, and
rejumps update the excess on the stack. The only exceptions are jumps to the
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Fig. 5: PNwa A1 for the XPath filter [//a/b].

q1

〈c〉

q2
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@self
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@self
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q4

γ[q3]

2

0

α[q2]

0

γ[q3]

α[q3]

0

α[q2]
0
α

Fig. 6: A successful run of the PNwa A1 of Fig. 5 on pw
1
.

closing tag of self nodes, where no excess is pushed. In general PNwa A1 works
as follows. It starts in the initial state q1, it opens the root and goes into q2,
where either the root can be closed to qrej or where it can jump over b and c
nodes to the opening tag of an a-descendant and go to q3. There are 3 possibili-
ties depending on what happens first: (1) close the a-node, and go to q2[q2], (2)
jump down over a sequence of a-nodes to the opening tag of a c-descendant and
go to q2, or (3) jump down over a sequence of a-nodes to the opening tag of a
b-descendant and accept in q4. In state q2 a c-node with a sequence of a-grand
parents can be closed to q3[q3]. The sequence of a-grand parents consists of a se-
quence of jumped a-nodes and one not jumped a-node π at the top. Continuing
depending on what comes first, the following can happen in q3[q3]: (1) jump back
to the closing tag of the a-grand parent π and go to q2[q2], (2) rejump over a
sequence of a-nodes, while staying below π, to the opening tag of a c-descendant
and go to q2, or (3) rejump over a sequence of a-nodes, while staying below π,
to the opening tag of a b-descendant, and accept in state q4. In state q2[q2] there
are 3 possibilities depending on what happens first: (1) rejump over a sequence



q

〈L〉 ↓ γ
〈/L〉 ↑ γ

Fig. 7: q ∈ i-labelL.

q q′

〈L〉 ↓ γ

〈/L〉 ↑ γ

〈L′〉 ↓ γ′′ 〈Σ \ {L′}〉 ↓ γ′

〈/Σ \ {L′}〉 ↑ γ′

Fig. 8: q ∈ i-treeL\L′ .

of b and c nodes to the opening tag of an a-descendant and goto q3, while stay-
ing below a not-jumped c-grand parent with a sequence of a-grand parents if
exists, (2) jump back to the closing tag of a not-jumped c-grand parent with the
a-grand parents sequence if exists, or else (3) close the root to qrej .

Next we are interested to evaluate a collection of PNwas obtained from
deterministic Nwas on a single nested word. For this, we need to project the
nested word with respect to the PNwas, and run the PNwas on the respective
projected nested word. Therefore, we have to define how to project a nested word
w with respect to a deterministic PNwa. More generally, we define a projection
πq(w) for any suffix w of some nested word in P ∗

Σ and state q of a PNwa A:

πq(w) = i. . . p@rπq′(w
′′)

such that w = w′pw′′ for some p ∈ PΣ and w′, w′′ ∈ P ∗
Σ , where w

′ is the shortest
prefix, so that there exists a rule of A from q to q′ consuming letter p@r for
some r ∈ Rels , and i is the excess of w′.

4 Irrelevant Labels and Prefixes of Nested Words

In this section, we define properties of Nwa states which allow to skip parenthesis
with irrelevant labels and irrelevant prefixes of nested words, that is prefixes of
linearizations of subtrees.

Definition 2 An Nwa E can jump over parenthesis with labels in L and in-
coming state q – in formulas q ∈ i-labelL – if there exists a stack symbol γ, such
that E has all transitions shown in Fig. 7, no other opening transition pushing
γ, no other a-opening transition in q, and no other a-closing transition with γ.

If q ∈ i-labelL then any sequence of letters in PL is irrelevant in state q, so
that it can be removed from the nested word and replaced by a jump symbol.
Consider a run of E on a nested word w and assume q ∈ i-labelL. We next
argue, that we can replace all letters in PL of w with ingoing state q by jump
symbols, while “repairing” the run. The first point is that the state is not changed
when reading such letters, so that their removal keeps the states correct. But we
must also take care of the stack. If an opening tag 〈a〉 is removed but not the
corresponding closing tag, then we have to repair the run, in order to be able
to reproduce the missing stack symbol when needed. The idea is to memoize
the state before jumping. Since this state does not change while jumping, one



can then recompute the stack symbol that was pushed for any letter that was
jumped over. Conversely, it is not possible that a closing tag 〈/a〉 was removed
but not the corresponding opening tag, since the symbol pushed at 〈a〉 must be
γ, and by definition of q ∈ i-labelL there is no other opening transition pushing
γ than that started in q.

Definition 3 An Nwa E in state q can jump over prefixes of nested words
(subtrees) that start in 〈L〉, do not contain letters in PL′ , and either end with
the closing tag of the subtree’s root or with a letter in L′, if there exist three
different stack symbols γ, γ′, γ′′ and a state q′ such that the transitions shown
in Fig. 8 exist, but no further opening transitions with γ, no further transitions
with γ′, and no further opening transitions in q′ for L′, and no further closing
transition in q for L popping γ. In this case, we write q ∈ i-treeL\L′ and call q
a state of irrelevant subtrees.

In the easiest case where q ∈ i-treeL\∅ one can jump over nested words
linearizing subtrees, with incoming state q and labels in L only. When opening
the root of the subtree, the state changes to q′ and stays there until closing the
root and going back to q. So the removal of the subtree does not change the
state globally. In this case, the full nested word of the subtree is read, so the
stack difference is zero. In the case where L′ 6= ∅ it is more tricky to repair the
run, in order to deal with missing stack symbols. But it remains possible, since
the state used within the subtree does not change, so that it can be memoized
and so that missing stack symbols can be recomputed at closing time.

For illustration, we have annotated the state of the Nwa in Fig. 3 with the
properties that they satisfy. It turns out that state q3 satisfies both properties
i-label{a} and i-tree{c}\{a}, but that we cannot perform the two corresponding
projections at the same time. When choosing projection with i-label{a} then we
obtain the PNwa A1 from Fig. 5.

5 Projection from Nwas to PNwas

We show how to project deterministic Nwas E to a PNwa A. For any state q of
E, we chose a projection property choice(p), which is either i-labelL or i-treeL\L′

for some sets L,L′ ⊆ Σ. Note that i-label∅ can always be assigned, so that this
assumption can always be satisfied, but not always in a unique manner.

Any state of A is either a state of q of E or a pair of states of E that we write
as q[q′]. Such a pair means that one is in state q and that on the top of the stack
is a jump symbol i that was pushed from a jump over i descendants that started
in state q′. Any stack symbol of A is either a stack symbol γ of E or a pair
written as γ[q] of a stack symbol and a state of E. γ serves as the stack symbol
that was pushed before at opening tags, while q is the state where a previous
jump started. Whenever such a pair γ[q] is on the stack then the symbol below
is always a jump symbol i that was pushed by a jump over i descendants that
started in state q. The sets of initial and final states remain unchanged.



Every transition rule of E gives rise to a possible empty set of transition rules
of A, according to rules I–VII in Fig. 9. In PNwa A1 from Fig. 5 we annotated
transitions accordingly. Transitions from an initial state are translated to non-
jumping transitions that open the root. If choice(q) = i-labelL, then all looping
transitions required by i-labelL are removed. The other opening transitions start-
ing from q are translated to jumping and rejumping transitions to descendants
and descendants of grand parents. If choice(q) = i-treeL\∅ then the opening and
closing L transitions, and looping transitions required by i-treeL\∅ are removed.
The other opening transitions starting from q are translated to jumping and re-
jumping rules to children and children of grand parents. If choice(q) = i-treeL→L′

then the opening and closing L transitions, and looping transitions required by
i-treeL→L′ are removed. All other transitions with opening tag a ∈ L′ departing
q are translated to jumping and rejumping rules for descendants. Closing transi-
tions are translated to six rules: Two rules to close self nodes, two rules to jump
back to jump’s origins, and two last rules that close parents in a state q[q′′] for
q 6= q′′. Those states do not allow to rejump, since the previous jump started
in a different state q′′ than the current state q, and therefore they also do not
allow to jump back to the jump’s origin. For these states opening and closing
transitions are translated as indicated, while recomputing stack symbols, that
have not been pushed for jumped grand parents.

Proposition 1 (Soundness) Let E be a deterministic Nwa E with initial
state q0 and A be a PNwa obtained from E by our projection algorithm. It
then holds for any nested word w that w ∈ L(E) if and only if πq0(w) ∈ L(A).

6 Experiments

We implemented Nwa projection within the QuiXPath system [3] and tested it
on the (revised) XPathMark query set [4] for navigational queries. As argued
in the introduction, it is most natural to measure the efficiency in parsing-free
time which can be measured as described in [2].

In a first experiment, we start from the best existing XPath evaluator on
Xml streams so far which is based on Nwas [2] (see there for comparisons
to alternative tools by [7,12] and others), and enhance it with projection. The
results are presented in Fig. 10 for a 559 MB XPathMark document. It turns
out that projection reduces the parsing-free running time for this query set by a
factor of 4.3, which is a major improvement, in particular when evaluating many
XPath queries in parallel as needed for streaming Xslt or XQuery programs.
In our second experiment, we compare the overall running time of our PNwa

evaluator of XPath queries on Xml streams with Saxon’s in-memory evaluator
[7]. For each of our queries, we compare the full running times including parsing,
when evaluating the query n-times. The results are given in Fig. 11. It turns out
that QuiXPath with projection for Nwas can answer on average a query up to
12 times in parallel, in no more time than needed by Saxon for the same task.

One observes that running less than 12 queries in parallel with PNwas is a lot
quicker than running them with Saxon, mostly due to the expensive in-memory



I: q q′
〈a〉 ↓ α q ∈ I

=⇒
q q′

〈a〉 ↓ α

II: q q′
〈a〉 ↓ α

a /∈ L 6= ∅, q /∈ I
=⇒

choice(q) = i-labelL

q
q′

q[q]

ju(〈a〉, ch+, α[q])

reju(〈a〉, ch
+ , α[q])

III: q q′
〈a〉 ↓ α

a /∈ L 6= ∅, q /∈ I
=⇒

choice(q) = i-treeL\∅

or choice(q) = i-label∅

q
q′

q[q]

ju(〈a〉, ch, α[q])

reju(〈a〉, ch , α[q])

IV:
q

〈a〉 ↓ α a /∈ L 6= ∅, a ∈ L′, q /∈ I
=⇒

choice(q) = i-treeL\L′
qq[q]

ju(〈a〉, ch+, α[q′])

reju(〈a〉, ch+, α[q])

V: q q′
〈/a〉 ↑ α q 6= q′′

=⇒

q

q′[q′′′]

q′

q[q]

q[q′′]

0. . . 〈/a〉@self ↑ α[q ′′′]

ju-back(〈/a〉, α)

ju-back(〈/a〉, α[q′′′])

0. . . 〈/a〉@self ↑ α
0. . . 〈/a〉@ch−1 ↑ 0 ↑ α

0. . . 〈/a〉@ch −1
↑ 0 ↑ α[q ′′′

]

VI: q q′
〈a〉 ↓ α q 6= q′′

=⇒
q′q[q′′]

〈a〉 ↓ α[q′′]

VII:
q q′

〈/a〉 ↑ α

q′′ q′′′
〈a〉 ↓ α

q 6= q′′

=⇒
q[q′′] q′[q′′]

〈/a〉 ↑ z ↓ z − 1
∀z > 0

Fig. 9: Rewriting system for rules of a deterministic Nwa to rules of the PNwa.

tree creation. But when running more than 12 queries on small documents,
the advantage of in-memory evaluation takes over. Indeed, without the time
for parsing and in-memory tree construction, Saxon in-memory evaluation is
still faster by a factor 20 in average than streaming with PNwas. With the
improvements of the present paper, it now seems possible that stream processing
can become more efficient than in-memory evaluation in practice in the future.

Conclusion and Future Work

We have developed a projection algorithm for evaluation navigational XPath

queries on Xml streams. The next step will be to lift this algorithm to all of
XPath 3.0. We believe that this can be done by decomposing general XPath

queries into a network of navigational XPath queries. Such a decomposition
underlies the implementation of XPath 3.0 in our QuiXPath tool [3], which is
unpublished so far. Once this is done, one can hope to lift our XPath projection
to Xslt and XQuery, by using X-Fun as an intermediate language [8].
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References

1. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the

ACM, 56(3):1–43, 2009.
2. D. Debarbieux, O. Gauwin, J. Niehren, T. Sebastian, and M. Zergaoui. Early

nested word automata for XPath query answering on XML streams. TCS 578:
100-125. 2015.

3. D. Debarbieux, T. Sebastian, M. Zergaoui, and J. Niehren. Quix-tool suite.
https://project.inria.fr/quix-tool-suite/, 2014.

4. M. Franceschet. XPathMark: An XPath benchmark for the XMark generated data.
In 3rd International XML Database Symposium, 2005.

5. A. Frisch. Regular tree language recognition with static information. In IFIP TCS,
pages 661–674, 2004.

6. O. Gauwin and J. Niehren. Streamable fragments of forward XPath. In CIAA,
volume 6807 of LNCS, pages 3–15. 2011.

7. M. Kay. The saxon XSLT and XQuery processor. https://www.saxonica.com.
8. P. Labath and J. Niehren. A uniform programming language for implementing

XML standards. In SOFSEM, 2015.
9. P. Madhusudan and M. Viswanathan. Query automata for nested words. In MFCS,

volume 5734 of LNCS, pages 561–573. 2009.
10. S. Maneth and K. Nguyen. XPath whole query optimization. VLPB Journal,

3(1):882–893, 2010.
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