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ABSTRACT

There exists a large body of work on online drift detec-
tion with the goal of dynamically finding and maintaining
changes in data streams. In this paper, we adopt a query-
based approach to drift detection. Our approach relies on a
drift indez, a structure that captures drift at different time
granularities and enables flexible drift queries. We formalize
different drift queries that represent real-world scenarios and
develop query evaluation algorithms that use different mate-
rializations of the drift index as well as strategies for online
index maintenance. We describe a thorough study of the
performance of our algorithms on real-world and synthetic
datasets with varying change rates.

1. INTRODUCTION

Monitoring streaming content is a challenging big data
analytics problem, given that very large datasets are rarely
(if ever) stationary. In several real world monitoring appli-
cations (e.g., newsgroup discussions, network connections,
etc.) we need to detect significant change points in the un-
derlying data distribution (e.g., frequency of words, sessions,
etc.) and track the evolution of those changes over time.
These change points, depending on the research commu-
nity, are referred to as temporal evolution, non stationarity,
or concept drift and provide valuable insights on real world
events (e.g. a discussion topic, an intrusion) to take a timely
action. In this paper, we adopt a query-based approach to
drift detection and address the question of processing drift
queries over very large datasets. To the best of our knowl-
edge, our work is the first to formalize flexible drift queries
on streaming datasets with varying change rates.

In the problem of drift detection, given a number of m
drifts ordered in time, we need no less than m + 1 inter-
vals to detect them. Thus, without any assumption on the
underlying distribution, we are interested in exploring how
to segment the input stream in order to find a reasonable
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tradeoff between true positives and false negatives. Existing
methods rely on segmenting the input stream, mostly into
smaller fixed length intervals [4, 6, 11, 13, 18]. Although
some works exist on partitioning the same stream into in-
tervals of different granularities [2, 9, 19], they either adopt
an offline analysis or they lack the ability of querying histor-
ical drifts in streams. A granularity in this case is an inter-
val of time (e.g., every hour) or a number of observed data
points (e.g., every 200 points). A drift is then defined as a
significant difference in data distributions between two con-
secutive intervals at the same granularity. To detect drifts
either statistical tests are directly applied on the data of two
intervals [7, 13] or on their summaries, as for instance pro-
vided by a clustering algorithm [1, 4, 5]. To this end, two
parameters impact the accuracy and efficiency of drift detec-
tion: the granularity of the intervals at which the original
data items are clustered and the drift significance thresh-
old used to assess whether or not there is a drift between
two consecutive clusterings. In fact, fine-grained intervals
can be used to capture the evolution of frequently changing
streams. However, they may induce computation overhead
for slowly changing ones. In addition, they may cause false
positives, i.e., detecting drifts that are too abrupt and noisy,
hence hurting precision. While a coarser granularity will im-
prove precision, since more data is clustered in each interval,
it may incur missing a drift that occurred at a finer granu-
larity. Those misses will negatively affect recall. Moreover,
the rate of change of a given dataset may vary over time
thereby requiring to consider different clustering granulari-
ties and drift thresholds for the same dataset.
Understanding the tradeoff between precision (at higher
segmentation granularities) and recall (at lower segmenta-
tion granularities), and the choice of thresholds to determine
what constitutes a drift between two consecutive intervals of
the same granularity, are the main objectives of this work.
In this paper, we adopt an analytics approach in which we
formalize drift queries over both fresh and historical data of
arbitrary time granularities, in order to provide flexibility in
tracking and analyzing drifts in evolving datasets. For this
reason, we propose a flexible drift index to organize past data
(or more precisely their summaries) at several granularities.
Furthermore. we explore different creation strategies for this
index relying on two common clustering approaches, namely
independent [8, 15, 20] and cumulative [1, 5]. In indepen-
dent clustering, data points belonging to a given interval are
considered equally important and clustered independently.
In cumulative clustering, data points in a given interval are



clustered with all previously occurring points and fresher
data is more important than older data. Moreover, we pro-
pose different materialization strategies in order to explore
the tradeoff between index storage and query response time.

Unlike existing approaches [4, 6, 11, 13, 18] comparing
only the last most recent intervals, we exploit this index in
order to identify drifts at different granularities. In partic-
ular, we formalize three kinds of queries: unary, refinement
and synthesis aiming to detect drifts against historical data.
A unary query is used to extract all drifts detected at a
given granularity. A refinement query explores drifts from a
source granularity (e.g., 5,000 points) to a finer target gran-
ularity (e.g., 500 points), iteratively. Such a query is useful
to provide a more detailed description of drifts that have
been detected in a high granularity, resulting in better recall.
Synthesis queries, on the other hand, start from a relatively
low granularity and summarize them into coarser ones. In
this case, some of the particular details might be missed (low
recall) in order to get drifts with higher precision. This flex-
ibility in querying drifts addresses a long standing concern
in detecting and tracking drifts in streaming content, that
is, the ability to explore, in a declarative fashion, precision
and recall tradeoffs at different granularities.

The evaluation of declarative drift queries relies on travers-
ing the index of historical data summaries and, at each gran-
ularity, comparing its nodes pairwise to identify points where
clusterings dissimilarity exceeds a threshold 6. Rather than
setting drift thresholds a-priori [6, 17], we learn a 6-value for
each dataset and at each granularity level in the index.

In summary, this paper makes the following contributions:

1. We introduce and formalize drift queries that provide
high flexibility in analyzing precision and recall of drift
detection for different time granularities.

2. We propose a drift index, a graph structure that cap-
tures change at different granularities and explore dif-
ferent materializations of the index that lead to the
design of various index maintenance and query evalu-
ation algorithms.

3. We propose learning algorithms for learning drift and
clustering thresholds adaptively for different granular-
ities and rates of change.

4. We perform a thorough study of proposed queries and
indices using two real datasets, KDD Cup’99 ! and
Usenet [12], and a synthetically generated dataset. On
the effectiveness front, our study confirms the need for
our refinement and synthesis queries, as demonstrated
by the very good precision/recall results they attain.
On the scalability front, it validates the need for dif-
ferent materializations of the drift index in order to
achieve a tradeoff between storage and query response

time for datasets of varying change rates.
Section 2 defines our data model and queries. Section 3

describes the drift index, the online index maintenance al-
gorithms and threshold learning. Section 4 is dedicated to
query evaluation algorithms. Section 5 contains a descrip-
tion of our experiments and findings. The related work is
summarized in Section 6. We conclude in Section 7.

2. DATA MODEL AND QUERIES

We are given a stream of data points D = {d1,...,d;,...},
d; = (tci,ts;) where te; is an r-dimensional vector of at-
tributes describing d; and ts; is the timestamp at which tc;
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arrived. For example, on Usenet each attribute represents a
term appearing in news feeds, while on KDD Cup’99 an at-
tribute can be any feature (e.g., transmitted bytes, duration
of connection) describing a connection record.

2.1 Clustering and Drifts

Definition 1. Time-Based and Point-Based Granu-
larities. A time-based granularity g is an interval of time.
For example, g could be hourly, daily, bi-daily, or weekly.
A point-based granularity g is an interval containing a fixed
number of consecutive data points. For example, g could be
500 points or 1000 points. We assume a total order between
granularities and use g << ¢’ to denote that g’ follows g.
We also say that g’ is coarser than g (and g is finer than
g'). We write g < ¢’ to denote that g’ immediately follows
g when there does not exist a granularity between g and ¢’.
In both cases, g <> ¢'.

Definition 2. Time-Based and Point-Based Intervals.
Granularities are used to segment data points in D. A seg-
mentation of a dataset D using a time-based or a point-based
granularity g, results in a list of consecutives intervals de-
noted I{, I, ... where I is the i—th interval (time-based
or point-based) of granularity g.

For a daily granularity g applied to segment a week start-
ing on Sunday, I{ corresponds to the time interval of Sunday.
Respectively, I{ corresponds to the interval containing the
first 500 data points when a point granularity g = 500 is
used to segment incoming data.

The choice of point-based or time-based intervals to seg-
ment a dataset depends on the rate of arrival of data points.
The main advantage of point-based intervals is the pro-
cessing of data in fixed-size batches (in terms of number
of points) although resulting intervals may have different
lengths (in terms of time). Time-based intervals on the other
hand, give the ability to tune the time granularity of the
analysis (e.g., hour, day) resulting in fixed-length intervals
(in terms of time) and varying in size (in terms of number of
data points). Consequently, in order to generate intervals of
comparable size, datasets that exhibit a high changing rate
should be segmented with point-based intervals while more
stable datasets can be segmented using time-based intervals.

Definition 3. Granularity Clustering. A granularity
clustering CY(D) is a partitioning of all data points d; €
D into a set of clusterings {C{,C7 ,,...} corresponding to
consecutive, non-overlapping time intervals {I7, IfH, ...} at
granularity g. A data point d; = (tc;, ts;) will belong to one
interval ]]5,7 s.t. ts; € I]‘f’. Here, tc; is a vector of r-entries
with the j-th entry corresponding to the weight of the j-th
attribute (e.g., word). Each cluster ¢ € CY has a centroid,
center(c) which is itself an r-dimensional vector, where the
j-th entry is the mean over the j-th entries of all data points
in the cluster.

Definition 4. Clustering Dissimilarity. Given two clus-
terings C7 and CY, we define, d*(c, '), the dissimilarity be-
tween a cluster ¢ € Cf and a cluster ¢’ € CY as the Euclidean
distance between their centroids:

lcenter(c) — center(c')||2 (1)



The dissimilarity between cluster ¢ € C7 and a clustering
CY, cdis(c,CY), is defined as the closest cluster to ¢ in CY:

arg min d>(c,¢) (2)
c'EC;7

The dissimilarity between two clusterings, dis(C{, CY), is
defined as:

1 . 1 .
[l Z cdis(c,CY) + o7 Z cdis(c',C?)  (3)

cecy 7 erecy
where |C7] is the number of data points belonging to C7.

Definition 5. Drift. For a dataset D, a granularity g, a
threshold 6, we say that there is a drift between two consec-
utive intervals I and I7, ,, iff their associated clusterings C7
and C7_,, satisfy dis(Cy,C7, ) > 0. We use z = (I7,I},,)
to denote the pair of consecutive intervals for which there
exists a drift and X9 = {«f,23,...} for the set of all drifts

detected at granularity g.
2.2 Drift Queries

The goal of drift queries is to compare drifts at different
granularities and provide analysts with the ability to explore
drift precison and recall across granularities. We study two
kinds of queries, refinement and synthesis. Both kinds rely
on a simpler unary query defined as follows.

Definition 6. Unary Query. A unary query UQ(D,g)
returns the set of all drifts X9 detected at granularity g for
a dataset D.

Definition 7. Refinement Query. A refinement query
RQ(D, gs,g9:) admits a source granularity g, and a target
one g s.t. gr << gs, and returns a set of pairs (z7°,z)
where each drift x?s € X9 at gs is associated to the finest
corresponding drift 27 € X at a granularity g no finer than
gt as follows:

{27 € X9, << g<=<gsVg=gt|
3afs € X9, I7 C (I7° U Il;)),

Pz? € X9 g <<g <<gVg =g, 1] C(IJ°UIl;)}

where I7* U I/}, = [ min (ts;), max (tsx)] and
ts;elfs tsp €177,

I C (17> v, if min (tsj) < min (tsx) and

tsj€(If*uIjs ) tsp€lfs
max (tsx) < max (ts;)
tspels ts;€(I7°UI7s)

Refinement queries provide a detailed analysis of drifts it-
eratively. For instance, for a source granularity gs = 1000
connections on KDD Cup’99, selecting a granularity g: =
500 might result in missing a more insightful analysis occur-
ring at granularity g: = 100. On the other hand, selecting
g: = 100 may result in retrieving false positives which could
be avoided at g; = 500. Therefore, the analyst will use the
refinement query RQ(D, 1000, 100) to obtain details of each
drift at gs = 1000 with a tradeoff between false negatives
and false positives.

Definition 8. Synthesis Query. A synthesis query
SQ(D, gs,g:) admits a source granularity g, and a target

one g s.t. gs << g, and returns a set of pairs (z7°, )

where each drift 27° € X9 at granularity g, is associated to
the coarsest corresponding drift a:? € XY at a granularity g
no coarser than g as follows:

{2 € X9,9s << g << gt Vg=gs |
3af*'e X%, 19 C (19U 1Y),

Bxl € X9 ,g<<g <<g Vg =g, I CU VI )}

Synthesis queries provide a summary analysis of drifts it-
eratively. For instance, for a source granularity gs = 100
connections on KDD Cup’99, selecting a granularity g: =
1000 might result in missing a more precise synthesis occur-
ring at g; = 2000. On the other hand, selecting g: = 2000
can result in missing a summary of a drift, which could be
obtained at g; = 1000. Therefore, the analyst can use the
synthesis query SQ(D, 100,2000) to obtain a summary of
each drift at g, = 100 with a tradeoff between false nega-
tives and false positives.

3. DRIFT INDEX

The flexibility of querying drift at different granularities
requires the design of appropriate data structures able to
capture clusterings at different granularities in such a way
that queries are evaluated efficiently. In this section, we de-
scribe the drift index, an efficient graph data structure that
is used to store and compute clusterings at different granu-
larities. We first formalize the index and then study several
materializations and develop algorithms for incremental in-
dex maintenance as data points continue to arrive.

Definition 9. Drift Index. The drift index is an undi-
rected graph G = (V, E) where each node contains a clus-
tering CY of points in D during interval I of granularity
g. Given two different granularities g and ¢’ s.t. g < ¢,
and two intervals I{ of granularity g and I Jg-’ " of granularity

g', there exists an edge in G between nodes CY and C’f/ if
rcr.

Definition 9 does not necessarily impose an edge between

nodes C7 and C’Jg/ every time I7 C 19 is satisfied. Indeed,
different materializations of the index may be explored. The
choice of which nodes to materialize affects three parame-
ters: (i) the index size and hence the time it takes to build
and maintain it as new data points arrive, (ii) the query re-
sponse time, and (iii) the accuracy of query results. Since
our approach is to serve queries for any time period, and not
only the latest period at which data points arrived, the index
continuously grows in size. Therefore, the key question we
address in designing the index is: what are possible index
materialization strategies, how much space they consume
and how do they affect query evaluation (response time and
accuracy)? In this section, we study index materialization
alternatives. The impact of each index on query evaluation
will be discussed in Section 4. In all our indices, the small-
est granularity, gmin, is used to generate leaf-level nodes. In
Section 5, we experiment with different values of gmin.

3.1 Full Index Materialization

When fully materialized, the drift index is a hierarchical
structure where each level contains clusterings of data points
inside intervals of the same granularity. Nodes correspond-
ing to the finest granularity are leaves in the graph and each
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Figure 1: Drift Index Variants

node, except nodes at the coarsest granularity, has one or
two parents. For example, a node containing a clustering of
data points for a 1-day granularity, e.g., Monday, will have
two parent nodes each of which corresponds to a two-day
granularity, in this case, Sun-Mon and Mon-Tue. Similarly,
a node containing 1000 data points will have two parents,
one containing it with the previous 1000 points and another
containing it with the following 1000 points. More formally,
given two granularities g and ¢’ s.t. g < ¢’, and two inter-

vals 17 and I ', there exists an edge from node C7 to node
Cf iff 17 C I g

Each node of the index contains a clustering of data points
of a given granularity. Thus, an important aspect of index
materialization is the selection of a clustering strategy and
algorithm to generate the nodes. According to the cluster-
ing literature, timestamped datasets can be clustered in one
of two ways. The first one, referred to as the independent
strategy, encompasses a family of algorithms built upon the
idea of visiting consecutive batches of data points by con-
sidering them as independent (e.g., one batch for Mon and
another for Tue) and equally important in terms of arrival
time (e.g., older data points are not penalized against fresher
ones) [15, 8, 20]. The second approach, referred to as the
cumulative strategy, parses data in a cumulative, single-pass
fashion (e.g., data of Tue are clustered with those of Mon),
aging older data points in a such a way that fresher data
points are given more importance [1, 5]. Our exhaustive in-
dex is designed to work with any of the two clustering strate-
gies which gives rise to two indices: Independent-Exhaustive
(IE) and Cumulative-Exhaustive (CE).

3.1.1 Independent Exhaustive Index

IE is generated using the independent strategy where nodes
of the same granularity, e.g., Sun, Mon, Tue, are produced
using data points of consecutive, non-overlapping intervals.
Nodes at the finest granularity level are produced by clus-
tering the arriving data points, while nodes at coarser gran-
ularities are produced by summarizing the centroids of clus-
terings associated with lower granularities.

Figure 1la illustrates an instance of IE with nodes num-
bered in the order they are created. Algorithm 1 summarizes
the different steps for building and maintaining the index.
The algorithm takes as input the drift index G (empty at the
beginning, non-empty in the case of index maintenance), a
data stream D, a maximum granularity gmaz, and an inter-
val I9min of minimum granularity gmin. For each batch of
data point inside 9" a clustering is produced (lines 3-6)

using an independent clustering algorithm (e.g., DBScan [8]
or k-means [10]). Nodes 1 to 6 of Figure la are produced by
this step. Then, nodes at coarser granularities (e.g., nodes
7-15) are generated by applying the same algorithm over the
centroids of clusters at lower granularity (lines 7-12).

Algorithm 1 IE Creation & Maintenance

Input: Drift index G, Stream of data points D, Max gran-
ularity gmae, Interval 197 of min granularity gmin
Output: Updated drift index G’

1: G+ G

2: {I{min [§min .} + consecutive intervals at gmin
3: for all I7™" do

4:  CJ™" + clustering in IJ™" (e.g., DBScan, k-means)
5:  Store C{™i" in G’ at granularity gmin

6: end for

7. for all gmin < g << gmaz do

8: for all C{ € C? do

9: C < clustering of the centroids of C{ and CY,,
10: Store C'in G’ as the right parent of CY

11:  end for

12: end for

13: return G’

3.1.2 Cumulative Exhaustive Index

CE is generated using the cumulative strategy where nodes
of the same granularity, e.g., Sun-Mon and Mon-Tue, are
produced using data points from overlapping intervals. As a
result, data points belonging to a given interval are clustered
with previously occurring data points.

Figure 1b shows an instance of CE with its nodes num-
bered in the order they appear. Algorithm 2 summarizes
steps of building and maintaining CE. The algorithm takes
as input a drift index G (empty at the beginning, non-empty
in the case of index maintenance), a data stream D, as well
as the maximum granularity gmas, and the minimum gran-
ularity interval I9™i" at gmin. After the initialization steps
(lines 2-5), each data point is assigned to a cluster (line 7-8).
Then every I9™i» number of points (line 9), a corresponding
clustering is generated and its centroid is stored in the index
(line 11) at granularity g, which is incremented until gmaz-
Nodes 1, 2 and 4 of Figure 1b are generated by this step.
When the maximum granularity gmaz is reached a new path
is initialized starting from the smallest granularity (line 16-
21) and the process is repeated. Node 7 initializes this new
path. In addition, for every node added in the index, its right
sub-path to gmin is also produced (line 21). For instance,
after the addition of node 4 in Figure 1b, its right sub-path
consisting of nodes 5 and 6 is also added. These nodes are
produced by applying the subtractive property [1] of clusters
(i.e., subtracting clusters centroids). Finally, there is a set of
nodes that do not belong to any right sub-path (e.g., nodes
10, 14, 15), forming the inverse triangle of Figure 1b. Each
one of these nodes is generated after the addition of its right
sibling and its sibling’s sub-path. Lines 12-14 of Algorithm
2 illustrate this process using the additive property [1] of
clusters (i.e., adding clusters centroids).

To handle infinite streams, several deletion strategies can
be provided. A naive approach is to remove x intervals every
X data points, including all corresponding nodes. However,
this approach misses valuable historical data. For this rea-
son, we consider an alternative deletion policy in which for



Algorithm 2 CE Creation & Maintenance

Input: Drift index G, Stream of data points D, Max gran-
ularity gmaz, Interval 9™ of min granularity gmin
Output: Updated drift index G’

1: G+ G

2: if G’ is empty then

3:  C <« clustering of D (e.g., DBScan, k-means)
4:  store C' in G’

5: end if

6: g < gmin

7: for all d; € D do

8:  C <« clustering of d; (e.g., CluStream)

9:  if (ts; —ts1) % I[9min==0 then

10: if g << gmae then

11: store C' in G’ at g-th granularity

12: if Ui=1,2..I] > gmao then

13: Build inverse triangle at g, by merging each

node’s left child with right-most child at gyin
14: end if

15: Move g to immediately following granularity

16: else

17: C’ « C—CYmer Flnitializes path by subtracting
the last stored C']S-’"“”” from current clustering C

18: Store C’ in G’ at granularity gmin

19: Move g to granularity immediately following g,in

20: end if

21: Create right sub-path of node C

22:  end if

23: end for

24: return G’

every X data points, the oldest = intervals are deleted and
only their highest available node in the index is kept.

3.2 Partial Index Materialization

Since fully materialized versions of the drift index are ex-
pected to consume a lot of space, we propose Independent-
Leaf (IL) and Cumulative-Path (CP) two partial index ma-
terializations, where fewer nodes are materialized thereby
resulting in indices that are smaller in size.

The main idea in IL is to build nodes at the lowest gran-
ularity only (black nodes in Figure 1c), corresponding to
lines 3-6 of Algorithm 1. All other nodes of higher granu-
larities can be extracted from the leaf nodes at query time,
if necessary. Respectively, the main idea in CP is to build
paths containing all the nodes at higher granularities that
include a given leaf node (black nodes in Figure 1d). The
algorithm that builds and maintains CP is a modification of
Algorithm 2, by ignoring lines 12-14 that build nodes of the
inverse triangle and line 21 that builds the right sub-paths.
From these nodes, built in partial materialization, all the re-
maining nodes (gray nodes in Figure 1d) may be generated
at query time, if necessary (more details in Section 4).

3.3 Time & Space Complexity

The worst-case time complexity of IE and IL is dictated
by DBScan, which needs O(logn) time to find the neighbors
for each of the n data points within an interval. Thus, the
time complexity is O(m * n * logn), where m is the number
of nodes in the index. Furthermore, each cluster is repre-
sented by the statistics (CF1; CF2;n) where CF1 and CF2
are r-dimensional vectors. Particularly, CF'1 (resp, CF2)

maintains, for each dimension, the sum of data values (resp,
sum of the squares of data values). Thus, each cluster main-
tains 2r+1 values and the space complexity is O (K *(2r+1)),
where K is the number of clusters for all nodes.

The worst-case time complexity of CE and CP is speci-
fied by k-means, O(n x k * d = i), where n is the number of
r-dimensional data points forming k clusters at each inter-
val and i the number of iterations. Furthermore, the space
complexity is O(m x k * (2 * r 4+ 3)), where 2r 4+ 3 values
are maintained for each of the k-clusters of all m clustering
nodes. These values contain the statistics described for IE
and two extra values (details in [1]); the sum and the sum
of the squares of the timestamps of input data.

Finally, the total number of nodes maintained in IE and
CEism = 1 % Lx (2% |C9""| — L + 1), where |[C9m"| is
the number of clustering nodes at gmin and L is the number
of index levels. The total number of nodes maintained in IL
and CP is m = ﬁ, where N the total number of points.

3.4 ¢and < Learning

According to Definition 5, when the dissimilarity between
two clusterings exceeds a threshold 6, a drift is detected.
Since fixed threshold values are not always appropriate for
data with varying drift rates, we are interested in learning 6
experimentally and do so for each granularity of our index.

During the learning phase, a training dataset is used in
order to estimate the drift parameter, 6. The training region
is independent from the testing dataset over which queries
are to be evaluated. Furthermore, the estimation of 0 is
automated and without any a-priori knowledge of the arrival
rates of drifts. However, in order to be well-estimated, it
should be learned on a long-enough time period to ensure
capturing the occurrence of several drifts.

Algorithm 3 summarizes the learning process of 8, values
per granularity level g. The algorithm takes as input a drift
index G, as well as minimum ¢, and maximum gp,q, gran-
ularities for which 6, values need to be estimated. For each
granularity g within gmin and gmaz, it extracts the distri-
bution of dissimilarities X, based on Definition 4, between
each pair of consecutive clusterings at g (line 3). Then, it
performs DBScan (i.e., any other algorithm could be used,
like k-means) over X, given as € the average pairwise simi-
larity of the 3-nearest neighbors in X. DBScan is performed
10 times, in order to select the clustering C' that optimizes
the Dunnlindex criterion. The Dunn index aims to identify
dense and well-separated clusters. It is defined as the ratio
between the minimal inter-cluster to maximal intra-cluster
distance. The inter-cluster distance is defined as the aver-
age distance between the centroids of the clusters. Similarly,
the intra-cluster distance is defined as the average distance
of any pair of points inside each cluster. Finally, the value
of 6, is extracted by calculating the average Euclidean dis-
tances between clusters in C' (line 10).

The precision of # estimation could be challenged when the
similarity between two consecutive clusterings (see line 3)
varies significantly (i.e., bimodal distribution). This is due
to the fact that the clustering distance is estimated (see line
10) by using the mean of clusters distribution and assuming
a low and constant standard deviation over time. Applying a
Z-Score statistical test over all training and testing intervals
we observed that the variation of the majority of intervals
(at least 95%) are less than two times the standard deviation
from the mean for all granularities and real datasets.



Algorithm 3 Learning of #-parameter

Algorithm 4 RefinementQuery

Input: Drift index G, Minimum granularity g¢min, Maxi-
mum granularity gmaz
Output: Parameter 0, for each gmin << g << gmaa
1: minPts <+ number of data dimensions
2: for all gmin << g << gmaz do
3: X <« dissimilarities distribution between consecutive
clusterings of g
€ < avg pairwise similarity of 3 NN in X
for all ¢ € [1,10] do
C + DBScan(X, e, minPts)
dunnilndex < DunnIndexz(C)
Pick C' that maximizes dunnlndex
9:  end for
10: 64 < average between clusters similarity of C'
11: end for

We also propose a training phase to learn the ¢ parame-
ter used by DBScan for building IE. Parameter € defines a
maximum e-neighborhood for each cluster. In literature, a
common way to choose its value is by plotting all distances
to the nearest neighbors and selecting the value where the
plot shows a strong bend. A similar approach is followed by
our learning process, adapted to each granularity level. For
brevity, we omit the algorithm for learning €. The € param-
eter can be estimated without any condition on the period’s
length. Thus, we propose to estimate both parameters (6,
€) within the same wide-enough period.

It is worth noticing that the estimation of clustering pa-
rameters can quickly become outdated, particularly when
dealing with rapidly evolving data distributions. In such
cases, parameters re-estimation (e.g., every X intervals) may
be useful to periodically adapt their values to data changes.

4. QUERY EVALUATION ALGORITHMS

This section presents our query evaluation algorithms us-
ing our proposed indices. Refinement and synthesis queries
rely on unary queries that return a set of drifts X7 for any
g. This is done by comparing the statistics between each
pair of consecutive, non-overlapping clusterings at g using
threshold 6,. When a partial index is used (IL or CP), some
index nodes (depicted in gray in Figures 1lc, 1d) need to be
generated on the fly possibly incurring computation over-
head. The unary query algorithm is straightforward and is
omitted for brevity. The performance of unary queries will
be studied in detail in Section 5.

Algorithm 4 illustrates the steps for evaluating a refine-
ment query. It takes as input any of the four materialized
drift indices G and a range of granularities between gs and
g:. Initially, it applies a unary query to detect all drifts
xzy* € X9 at gs (line 2). Then, for each of these drifts,
it detects all corresponding drifts CU? € XY at finer granu-
larities g, that are no finer than g; (lines 3-11) using the
condition I C (I7* U I};,) (line 8) for all drifts at g.

A synthesis query is evaluated over a drift index G and a
granularity range between gs and g¢, where gs << ¢g:. The
steps of the algorithm are equivalent to Algorithm 4, by sim-
ply replacing the condition in line 8 with I7* C (I UT7, ).
Thus, for any observed drift z{* at g, a corresponding drift
m]g- at a coarser granularity g, no coarser than g; is returned.
The time interval I U I7,, of the corresponding drift zf

Input: Drift index G, Granularity range [gs, g¢] (g¢ << gs)
Output: A set S of drift pairs (z}*,z7), g << gs

1: S, prev,curr < 0

2: X% «UQ(D,gs)

3: for all z¥* € X9 do

4:  for all g; << g << g: do
5: prev < curr; curr < ()
6: X9+ UQ(D,yg)

7: for all z§ € X7 do

8: if 19 C (I Ul )AL, C(I7°Ulf)) then
9: curr+ = x?
10: end if

11: end for
12: if curr == () then

13: S+ = (a?°, prev)

14: break
15: end if

16: if g == g; then
17: S+ = (a¥*, curr)

18: end if

19:  end for
20: end for
21: return S

should take place during I7¢ where z/* was observed.

S. EXPERIMENTS

In this section, we provide a thorough investigation of our
queries, both from the accuracy and the scalability perspec-
tives. All experiments were conducted on a 2 GHz Intel
Core i7 processor with 8 GB memory, which runs MAC op-
erating system. Our accuracy results are the average of 5
consecutive runs. We learn € and 6 on a training dataset
covering approximately 30% of the input data. Also, unless
mentioned otherwise, we set the k parameter of CE to the
average number of clusters produced by IE. Finally, we refer
to each granularity level using incremental numbers (e.g.,
level 1 for the lowest granularity, then 2 etc). For both clus-
tering algorithms (Clustream [1] and DBScan [8]), the imple-
mentations provided in MOA [3] are used. Some necessary
extensions are applied in the implementation of CluStream,
in order to provide additive and subtractive properties [1].

5.1 Dataset Preparation

5.1.1 Synthetic Datasets

We developed a synthetic data generator that provides
the flexibility to produce datasets deriving from different
distributions (i.e., well-separated, overlapping) and rates of
change (i.e., sudden, incremental). Furthermore, the param-
eters of clustering are also tuned, including the number and
size of clusters, as well as their density.

Specifically, synthetic datasets are produced with data
points deriving from two distributions in a low and a high
region. Each distribution consists of a number of close clus-
terings, that derive from the same region (i.e., low, high).
Furthermore, each distribution contains a given number of
data points and each clustering is described by k clusters.
The total size of synthetic data is generated randomly and
the number of drifts is also parameterized.
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Figure 2: Different Data Distributions

Three data sets are generated, in order to simulate differ-
ent types of drifts. Figure 2 illustrates two examples. Specif-
ically, Figure 2a depicts sudden drifts, marked with vertical
lines, that occur each time the distribution of data oscillates
between low and high region. The distribution of data in
low region has values within [2, 4], while the distribution
of high within [10, 12] forming well-separated regions. On
the contrary, Figure 2b illustrates incremental drifts, occur-
ring between low [2,4] and high [3, 5] regions of overlapping
values. Finally, a third dataset is generated containing in-
cremental drifts of consecutive regions, with values of low
region within [2,4] and high within [4, 6].

For the purpose of building the index, the dataset is split
into intervals of 200 data points each forming a leaf node at
gmin- The next granularity consists of 400 points, the third
of 600 and the 10th contains intervals of 2000 data points.

5.1.2 Real Datasets

Query accuracy was evaluated over two datasets derived
from two different application domains. The first collection
consists of 5,931 Usenet articles from the 20 Newsgroup col-
lection where each article belongs to one of 6 news feeds
(e.g., sports, science). A user can subscribe to any of these
feeds, showing his interest in receiving relevant articles, or
unsubscribe at any time. Each article is represented with a
binary vector of 658 attributes, where each attribute indi-
cates the absence or presence of a word. Another attribute
indicates whether the user is interested in an article or not.
Thus, the clustering procedure will result in clusters contain-
ing articles that are likely to derive from the same feed (e.g.,
sports) and interest the user. A drift is the moment where a
user decides to unsubscribe from some feeds and subscribe to
others and can be computed on the whole data. The ground
truth hence is known and encompasses five drifts. Exper-
iments on Usenet are performed using a small point-based
interval of 100 data points, a maximum index depth of 6
and the number of clusters for CE is k = 3. The training
set consists of 2,400 data points, containing 2 drifts.

The second dataset of KDD Cup’99 is a Network Intru-
sion detection stream of 494,020 normal TCP connections
and cyber attacks. It contains a variety of intrusions that
fall into 4 categories: DOS, R2L, U2R and PROBING. Most
of the connections in the dataset are normal but occasionally
bursts of attacks appear. Thus, we are interested in detect-
ing drifts where realtime attacks occur. Each connection is
described by 42 categorical (e.g., type of protocol) or contin-
uous (e.g., bytes transmitted) attributes. For our analysis,
we use the 34 continuous attributes. In order to create a

ground truth for evaluating query accuracy, we consider as
drifts the time moments where at least minAttacks = 30
consecutive malicious connections appear. The ground truth
hence encompasses 45 drifts on the whole dataset. We set
the smallest granularity to 500 points, the index depth to
10, corresponding to an interval length of 5,000 points and
k = 4. The training dataset contains 20,500 points.

The smallest granularity is a critical parameter, indicated
by the magnitude and arrival rate of drifts. To this end, the
parameter settings used in [12] are applied for our experi-
ments in Usenet, where 5 drifts exist within 5,931 points. On
the contrary, wider intervals are selected for KDD Cup’99
of lower arrival rate with 45 drifts within 494,020 points.

5.2 Summary of Results

Our experiments show that unary queries can reach a 79%
accuracy on real datasets. They also show that indepen-
dent clustering attains a significantly better accuracy than
cumulative for incremental changes of overlapping data dis-
tributions. They also confirm the usefulness of refinement
and synthesis queries, by demonstrating their ability to ex-
plore the tradeoff between precision/recall. For instance,
using CE, while UQ(KDD, 1) and UQ(KDD, 10) attain 52%
and 13% accuracy respectively, SQ(KDD, 1, 10) attains 74%.
Moreover, the scalability evaluation of our indices show a
tradeoff between full and partial materializations, in terms
of index size and query response time. Fully materialized
indices are at least an order of magnitude faster in query re-
sponse time than partial. On the contrary, fully materialized
indices require at least 4 times more space than partial.

5.3 Accuracy of Drift Detection

Query accuracy varies between full and partial index ma-
terializations. This variation is caused by the random par-
titioning of data points during DBScan and k-means clus-
tering. However, this variation is minimized with multiple
executions and is not statistically significant. Hence we pro-
vide accuracy results for exhaustive indices only (IE, CE),
assuming a not significantly different performance of partial
indices (IL, CP). The accuracy is evaluated by using the tra-
ditional F-measure, which is the harmonic mean of precision
and recall. A detected drift is considered a true positive if
the corresponding real drift is within the compared intervals
in the ground truth. This evaluation strategy is also used
in [13]. For instance, a detected drift at point 800 extracted
by comparing the point-based intervals [400, 800) and [800,
1200) will correspond to a real drift within the region [400,
1200). This drift can, for example, take place at point 1000.
However, a drift at point 1000 might also be detected by
comparing intervals [800, 1200) and [1200, 1600). Thus, in
case of multiple detections of the same drift at a given gran-
ularity, we ignore its subsequent detections.

5.3.1 Unary Queries

Synthetic Data. The goal of synthetic data evaluation
is to understand how different time granularities, as well as
clustering strategies (independent, cumulative) affect query
accuracy. To this end, we perform unary queries over differ-
ent granularity levels and for both CE and IE.

Figure 3a illustrates the accuracy (y-axis) of unary queries
for different granularities (x-axis) over the synthetic dataset
with sudden drifts (Figure 2a). It shows that accuracy is
very good for low granularities. However, recall worsens at
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Figure 3: Unary Queries Accuracy. A tradeoff between precision and recall is observed over different granularity levels.

higher granularities. Consequently, increasing the resolution
of analysis decreases the ability of the algorithm to observe
drifts occurring at finer granularities. However, precision
remains greater than 0.9 at all levels.

Figure 3b depicts the unary queries behavior when ap-
plied on incremental drifts of consecutive data regions. We
observe that the algorithm performs badly for very small
or very large intervals. Very small intervals are sensitive
to subtle changes causing a large number of false positives.
Thus, those granularities suffer from low precision but ex-
hibit high recall. Similarly, very wide intervals are suscepti-
ble to false negatives as they may miss drifts existing within
them. On the contrary, intermediate granularities provide
intervals that fit data better and improve accuracy.

The last dataset containing incremental drifts of overlap-
ping regions (Figure 2b) reveals a statistically significant
difference in accuracy (Figure 3c) between IE and CE for
all levels greater than 2. The observed difference is due to
the design of each index. For instance, CE tends to add in-
put data into existing clusters. This addition causes cluster
centroids to shift over time and absorb any change, con-
sidering it as non-significant. To alleviate that, we ran an
experiment varying the number of clusters, k. Although not
shown here, we observed no significant improvement in per-
formance. Thus, the online and one-pass design of the algo-
rithm causes the absorption of incremental changes. On the
contrary, IE forms clusters by independently visiting data
points in different intervals. The algorithm detects data re-
gions of high density and is independent from previously
computed clusters. Therefore, IE outperforms CE for over-
lapping data regions.

Although accuracy tends to decrease at higher index lev-
els, there are some oscillations between levels. These fluc-
tuations can be explained if we consider the statistical error
introduced by adding and subtracting clusters’ statistics as
in [1]. A typical example of this error is illustrated in Fig-
ures 3a to 3¢ regarding the accuracy of CE at levels 9 and 10.
Several nodes at level 9 are produced by the additive and
subtractive property. On the contrary, none of the nodes at
level 10 are generated by these properties. Thus, level 10
has a lower statistical error than level 9 and shows better
accuracy despite its wider intervals.

Finally, we provide a comparison of our drift index accu-
racy with a state-of-the-art drift detection algorithm, named
CUSUM [16]. CUSUM calculates the cumulative sum which
detects a drift when the mean of the input data is signifi-
cantly different from zero. Results show that our drift in-

dex outperforms CUSUM for each granularity and dataset.
Specifically, CUSUM reaches a 98% of accuracy for the dataset
of sudden drifts, while the accuracy drops in 24% and 16%
for consecutive and overlapping datasets respectively.

Real Data. Figure 3d shows the F-Measure results
of unary queries (y-axis) on Usenet for each level in the
index (x-axis). The main trend observed is an increase in
accuracy as the granularity increases. This is not surprising,
as the frequency of drifts in this dataset occurs at least every
700 data points. Thus, when the interval length increases
(especially to 600 points at gmez) the algorithm performs
very well, as there are enough available points to detect the
drift. In fact, the unary query at gmas reports three different
drifts. A user who initially subscribed to electronics and
crypt news changed her interests into hockey and sales and
then subscribed to motorcycles and space news. It is worth
mentioning that the inappropriateness of interval length at
the leaf level induces CE to report no drifts.

Tables 1 and 2 illustrate the accuracy (last line) of unary
queries for KDD Cup’99 for each granularity level of IE and
CE respectively. Similarly to synthetic data, we observe
that the finest and coarsest granularities cause a decrease in
accuracy for both indices. Indeed, a low precision and a high
recall characterize the leaf level and the inverse is observed
at the coarsest granularity.

5.3.2  Refinement & Synthesis Queries

We designed refinement and synthesis queries to explore
precision and recall tradeoffs. For brevity, in Tables 1 and 2
we present only the accuracy results for KDD Cup’99. Each
row (resp. column) corresponds to gs (resp. g¢:) which are
given as input to the queries. The tables contain every possi-
ble combination of levels in an attempt to discuss the impact
of each query on accuracy. For example, a refinement query
is evaluated over a small range of levels (e.g., RQ(D,2,1)),
as well as on the entire index (e.g., RQ(D,10,1)). The
upper-half of the tables contains the F-Measure of synthesis
queries and the lower-half concerns refinement queries. The
best accuracy results for each table are mentioned in circles,
along with the corresponding unary queries results.

The question we attempt to answer is whether refinement
and synthesis queries can attain a tradeoff between accuracy
of unary queries at gs or g¢. All values mentioned in bold
indicate those cases. Thus, in the majority of the queries,
the analyst will get a summary of drifts that exploits the
tradeoff of precision and recall between gs and g:. However,
note that there are few cases where the F-Measure is worse
than any of the two levels. These cases are observed espe-
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Table 1: F-Measure for refinement (lower matrix) and syn-
thesis (upper matrix) queries over IE, KDD Cup’99

cially when refining queries at very low granularities (i.e.,
first two columns of tables). Low levels have a high rate of
false positives, which negatively affects accuracy even when
refining only the most precise drifts of higher levels.

5.4 Scalability Study of All Indices

We perform an index scalability experiment to study in-
dex size and build time and query response time. For this
purpose, synthetic datasets of different sizes are produced.

5.4.1 Index Size

Index size depends exclusively on the number and size of
maintained nodes. Therefore, increasing the number of in-
dex nodes, for instance by increasing the index depth or the
volume of input data or by decreasing the interval length,
will inevitably lead to an increase of the index size. More-
over, increasing the size of each node, for instance by in-
creasing the number of clusters (k), will negatively impact
index size. We fix the depth to 5 and we test the impact of
the other parameters on the scalability of our indices.

Varying Dataset Size. Figure 4a illustrates the drift
index size calculated in MBs (y-axis) as a function of input
data size calculated in number of points (x-axis). We set the
minimum interval size at gmin to 100 points for all datasets.
The chart is in a log-log scale and we observe a linear trend
of all indices as data size increases. We also observe that
the lines of cumulative indices have a steeper slope. This is
explained by the extra overhead paid for maintaining infor-
mation about a cluster’s origin. This information describes if
a cluster is derived from others and is more likely to increase
as the dataset increases. Finally, as expected, partially ma-
terialized indices consume at least 5 times less space.

Varying Interval Length. The interval length selected
for each granularity has also a critical impact on index scal-
ability. Figure 4b shows the result of varying the interval
length within [100, 1000] for a fixed dataset size of 225,000
points. Figure 4b reports a decreasing index size trend for
all indices with wider intervals. When the size of an inter-
val increases, the size of the clustering inside that interval is
not affected. That is because the same clustering statistics
are maintained. Thus, wider intervals reduce the number of
nodes maintained by the index without affecting the size of
each node. This explains the decreasing trend observed.

5.4.2 Time Results

The most frequent and time consuming operation of drift
detection is the computation of clustering dissimilarities for
every pair of nodes at each granularity. The cost of this op-
eration naturally increases with the number of index nodes
as shown in Figure 5a. Figure 5a illustrates the response
time of all unary queries applied at each granularity for dif-

Table 2: F-Measure for refinement (lower matrix) and syn-
thesis (upper matrix) queries over CE, KDD Cup’99

ferent dataset sizes. It is evident that IL and CP need at
least an order of magnitude more time to detect drifts, as
they produce missing nodes at query time.

Figure 5b illustrates the build time of each index, provid-
ing evidence for the trade-off between index building time
and query response time. Figures 5b and 5a indeed show
that the more time we spend building the index, the less
time we need during query evaluation. Furthermore, Fig-
ure 5b illustrates that both independent indices, IE and IL,
need more build time than cumulative ones, CE and CP.
Despite the fact that IL is a partial index, it needs a higher
build time than CE. This could be explained by the fact that
IL iteratively visits data points in order to form clusters.

Figure 6a depicts unary query response time (y-axis) per
granularity (x-axis) for a synthetic dataset of almost 225K
data points. IL shows a sharp increase in drift detection
as levels increase, due to generating missing nodes on the
fly. On the contrary, IE’s response time decreases at higher
levels, due to fewer nodes. Thanks to the hierarchical struc-
ture of our indices less nodes exist at higher granularities,
explaining the almost constant response time after level one
for both indices. That also explains the sudden drop in re-
sponse time for CP.

The performance of refinement queries is measured start-
ing from level g5 = 5 until all finer levels of g;, shown in
the x-axis of Figure 6b. We notice that the longer the path
from g5 to g+, the more time it takes for the query to respond
(for all indices). The same behavior is observed on synthesis
queries, as shown in Figure 6¢, where gs = 1.

6. RELATED WORK

Most of the existing drift detection methods rely on seg-
menting the input stream into smaller fixed length inter-
vals [4, 6, 11, 13, 18]. The comparison of intervals is then
based either on statistical tests or on probabilistic measures.
In the former case, a null hypothesis of equal distributions
is formed [7, 13], while in the latter a user-defined threshold
is utilized to detect drifts [6, 18]. However, a drawback of
these works derive from the lack of dynamically adapting
thresholds to the varying change rates. Furthermore, they
suffer from the problem of single granularity, due to fixed
length intervals, resulting in low precision/recall.

An attempt to solve the problem of single granularity is
made in [14] by providing multi-partition techniques, but it
also remains in an offline context. On the contrary, an online
drift detection approach that aims to detect the most recent
drifts, by comparing the last two intervals, is presented by
FLORA2 [19]. FLORA2 dynamically learns interval length.
A heuristic method shrinks the interval, by forgetting old
data points, each time a drift occurs; otherwise, the interval
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grows. Also, some other approaches exist [2, 9] calculat-
ing statistics over sliding and growing intervals in order to
detect a drift. However, all these works lack the flexibility
of querying historical and fresh data for detecting drifts at
different granularities.

7. CONCLUSION

We present drift queries on streaming content at differ-
ent time granularities. This flexibility in querying drifts ad-
dresses a long standing concern, that is, the ability to ex-
plore, in a declarative fashion, precision and recall tradeoffs
introduced by data segmentation at different time granu-
larities. Our drift index enables efficient query evaluation
and our experiments on real and synthetic datasets show
the usefulness of our queries as demonstrated by the very
good precision/recall results they attain.

We believe that this work laid the foundation for a series
of new contributions in querying drifts in streaming content.
One direction we are pursuing is the applicability of our
approach to the detection of sales drifts in the retail industry
and the ability to compare drifts over time across multiple
products and stores.
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