J. Andén and S. Mallat, Multiscale scattering for audio classification, In: ISMIR. pp, pp.657-662, 2011.

Y. Bas, O. Dufour, and H. Glotin, Overview of the nips4b bird classification, Proc. of Neural Information Processing Scaled for Bioacoustics: from Neurons to Big Data, joint to NIPS, pp.12-16, 2013.

F. Briggs, B. Lakshminarayanan, L. Neal, X. Z. Fern, R. Raich et al., Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach, The Journal of the Acoustical Society of America, vol.131, issue.6, p.4640, 2012.
DOI : 10.1121/1.4707424

J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang, Sensor Network for the Monitoring of Ecosystem: Bird Species Recognition, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp.293-298, 2007.
DOI : 10.1109/ISSNIP.2007.4496859

O. Dufour, T. Artieres, H. Glotin, and P. Giraudet, Clusterized mel filter cepstral coefficients and support vector machines for bird song idenfication, Soundscape Semiotics -Localization and Categorization, 2014.

K. J. Gaston and M. A. Neill, Automated species identification: why not? Philosophical Transactions of the, Royal Society of London. Series B: Biological Sciences, vol.359, pp.655-667, 1444.

H. Glotin and J. Sueur, Overview of the 1st int'l challenge on bird classification, Proc. of the first workshop on Machine Learning for Bioacoustics, joint to ICML, pp.17-21, 2013.

A. Joly, J. Champ, and O. Buisson, Shared nearest neighbors match kernel for bird songs identification -lifeclef 2015 challenge, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182784

A. Joly, H. Goëau, P. Bonnet, V. Baki´cbaki´c, J. Barbe et al., Interactive plant identification based on social image data, Ecological Informatics, vol.23, pp.22-34, 2014.
DOI : 10.1016/j.ecoinf.2013.07.006

URL : https://hal.archives-ouvertes.fr/hal-00908872

M. Lasseck, Improved automatic bird identification through decision tree based feature selection and bagging, Working notes of CLEF 2015 conference, 2015.

D. J. Lee, R. B. Schoenberger, D. Shiozawa, X. Xu, and P. Zhan, Contour matching for a fish recognition and migration-monitoring system, Two- and Three-Dimensional Vision Systems for Inspection, Control, and Metrology II, pp.37-48, 2004.
DOI : 10.1117/12.571789

S. A. Mokhov, Study of best algorithm combinations for speech processing tasks in machine learning using median vs. mean clusters in MARF, Proceedings of the 2008 C3S2E conference on , C3S2E '08, pp.29-43, 2008.
DOI : 10.1145/1370256.1370262

S. A. Mokhov, A marfclef approach to lifeclef 2015 tasks, Working notes of CLEF 2015 conference, 2015.

D. Stowell, Birdclef 2015 submission: Unsupervised feature learning from audio, Working notes of CLEF 2015 conference, 2015.

D. Stowell and M. D. Plumbley, Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. arXiv preprint arXiv:1405, p.6524, 2014.

M. Towsey, B. Planitz, A. Nantes, J. Wimmer, and P. Roe, A toolbox for animal call recognition, Bioacoustics, vol.123, issue.1, pp.107-125, 2012.
DOI : 10.1109/TASL.2006.872624

V. M. Trifa, A. N. Kirschel, C. E. Taylor, and E. E. Vallejo, Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models, The Journal of the Acoustical Society of America, vol.123, issue.4, p.2424, 2008.
DOI : 10.1121/1.2839017

Q. D. Wheeler, P. H. Raven, and E. O. Wilson, Taxonomy: Impediment or Expedient?, Science, vol.303, issue.5656, 2004.
DOI : 10.1126/science.303.5656.285