R. L. Adler and B. , Weiss Similarity of automorphisms of the torus, Memoirs of the, pp.1-43, 1970.

S. Akiyama, Pisot numbers and greedy algorithm Number Theory, Diophantine Computational and Algebraic Aspects, pp.9-21, 1998.

P. Arnoux and A. , Fisher The scenery flow for geometric structures on the torus: the linear setting

P. Arnoux and S. , Ito Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc

P. Arnoux and A. , Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Annales scientifiques de l'??cole normale sup??rieure, vol.26, issue.6, pp.645-664, 1993.
DOI : 10.24033/asens.1682

P. Arnoux, S. Ito, and Y. , Sano Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math

J. Berstel, Recent results in Sturmian words, Developments in Language Theory II, pp.13-24, 1996.

V. Berthé and R. , Tijdeman Balance properties of multi-dimensional words, Theoret. Comput. Sci

V. Berthé and L. , Vuillon Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math, pp.27-53, 2000.

R. Bowen, Markov partitions are not smooth, Proceedings of the American Mathematical Society, vol.71, issue.1, pp.130-132, 1978.
DOI : 10.1090/S0002-9939-1978-0474415-8

J. Cassaigne, S. Ferenczi, and L. , Imbalances in Arnoux-Rauzy sequences, Annales de l???institut Fourier, vol.50, issue.4, pp.1265-1276, 2000.
DOI : 10.5802/aif.1792

P. Arnoux, V. Berthé, H. Ei, and S. Ito-fig, 9: The exchange of pieces: the domain [16] N.G. deBruijn Updown generation of Beatty sequences, Kon. Nederl. Akad. Wetensch. Proc. Ser. A, pp.92-385, 1989.

H. Ei and S. , Ito Tilings from characteristic polynomials of ?-expansions, preprint, 2001.

D. J. Feng, M. Furukado, S. Ito, and J. , Wu Pisot substitutions and the Hausdorff dimension of atomic surfaces, 2000.

S. Ferenczi, Bounded remainder sets, Acta Arith, pp.61-319, 1992.

T. Fujita, S. Ito, M. Keane, and M. , Ohtsuki On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof, Ergodic Theory Dynam, Systems, vol.16, pp.1345-1352, 1996.

S. Ito, Fractal Domains of Quasi-Periodic Motions on T 2, Algorithms, Fractals, and Dynamics, pp.95-99, 1995.
DOI : 10.1007/978-1-4613-0321-3_8

S. Ito, On periodic expansions of cubic numbers and Rauzy fractals Dynamical systems, From Crystal to Chaos, Proceedings of the conference in honor of Gérard Rauzy on his 60th birthday, pp.144-164, 2000.

S. Ito and M. , On Rauzy fractal, Japan Journal of Industrial and Applied Mathematics, vol.110, issue.3, pp.461-486, 1991.
DOI : 10.1007/BF03167147

. Fig, 10: The exchange of pieces: the image

S. Ito and M. , Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms, Tokyo Journal of Mathematics, vol.16, issue.2, pp.441-472, 1993.
DOI : 10.3836/tjm/1270128497

S. Ito and M. , Parallelogram Tilings and Jacobi-Perron Algorithm, Tokyo Journal of Mathematics, vol.17, issue.1, pp.33-58, 1994.
DOI : 10.3836/tjm/1270128186

M. Lothaire, Algebraic Combinatorics on Words, Chapitre 2: Sturmian words, J. Berstel et P. Séébold

A. Messaoudi, Frontì ere du fractal de Rauzy et système de numération complexe, Acta Arith, vol.95, pp.195-224, 2000.

M. Morse and G. A. , Symbolic Dynamics II. Sturmian Trajectories, American Journal of Mathematics, vol.62, issue.1/4, pp.1-42, 1940.
DOI : 10.2307/2371431

A. Siegel, Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, Thèse, 2000.

J. Verger-gaugry and J. , Gazeau Geometric study of the set ¥ ? of beta-integers with ? a Perron number, a ?-number and a Pisot number and mathematical quasicrystals, 2001.

J. Vidal and R. , Mosseri Generalized Rauzy tilings: construction and electronic propertie, Materials Science and Engineering A, pp.294-296, 2000.

J. Vidal and R. , Mosseri Generalized quasiperiodic Rauzy tilings, J. of Physics A, Math. and Gen, 2001.

L. Vuillon, Combinatoire des motifs d'une suite sturmienne bidimensionnelle, Theoretical Computer Science, vol.209, issue.1-2, pp.261-285, 1998.
DOI : 10.1016/S0304-3975(97)00117-5

E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci.Lì ege, pp.41-179, 1972.