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What is the maximum number of edges of the d-dimensional hypercube, denoted by S
�
d � k � , that can be sliced by

k hyperplanes? This question on combinatorial properties of Euclidean geometry arising from linear separability
considerations in the theory of Perceptrons has become an issue on its own. We use computational and combinatorial
methods to obtain new bounds for S

�
d � k � , d � 8. These strengthen earlier results on hypercube cut numbers.
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1 Introduction
Hyperplane H ��� d is said to slice the line segment L �	� λa 
�� 1 
 λ � b : 0 � λ � 1 � between vertices
a � b ��� d iff their intersection H � L is an interior point of this segment. Let Gd ��� Vd � Ed � denote the d-
dimensional hypercube, i.e., the geometric graph on vertex set Vd ����
 1 ��
 1 � d � � d with �Ed ��� d � 2d � 1

undirected edges. It is obvious that the d hyperplanes

H j ��� x ��� d : x j � 0 � for j � 1  ! " d (1)

slice all edges of Gd . However M. Paterson [13] observed that for d � 6 one can do better: 5

sophisticatedly chosen hyperplanes suffice to cut all
members of E6.
So what is the minimum number C � d � of hyperplanes
needed to cut all the edges in Ed for arbitrary d?
Problems of this kind arise from linear separability
questions in connection with Perceptrons [10]. On the
other hand, cutting the hypercube has a vast variety of
applications in theory of integer linear programming
[1], and in optimization of pseudo-

C � d 
 1 � � C � d � � d

C � d1 
 d2 � � C � d1 �#
 C � d2 � [14]

C � 4 � $ 3 [2]

C � 5 � $ 4 [15]

C � 6 � � 5 [13]

C � d � % Ω &(' d ) [11]

1.1 TABLE: PROPERTIES OF CUT NUMBERS.
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boolean functions [8]. Notice for instance that C � d � is a lower bound on the size of any threshold circuit
[7] computing the parity of d bits, the best known upper bound being linear O � d � .

The values of these Cut Numbers C � d � as well as their asymptotic growth have first been raised by
O’Neil [11], then by Grünbaum [6], and most recently by Klee [9]. Previous results (see Table 1.1)
established C � d � � d for d � 1  ! " 5 and C � 6 � � 5. But for higher dimensions, only lower and upper
bounds are known which leave a quadratic gap as depicted in Figure 2.1.

Ω & ' d ) � d � 2d � 1�
d � 2 � � & d�

d � 2 � ) � C & d ) � � 5
6 d 	 � O & d ) (2)

2 Motivation
Notice that for each d, exactly one inequality in
C � d � � C � d 
 1 � � C � d � 
 1 is tight, and C � d � �
C � d 
 1 � holds for at least every 6th d. Improved
results about this frequency immediately yield bet-
ter bounds. We therefore believe that in particular
the first occurrence of these ‘anomalities’ C � d � �
C � d 
 1 � deserves further investigation.
Our aim is to study cuts of the 5 and 6-cubes ac-
cording to the number of edges they slice. More
precisely, we want to determine the Slicing Number
S � d � k � : the maximum number of edges of

d

S(d)

1 2 3 4 5 7

1

2

3

4

6

5

6

???5/6 d

d√

2.1 FIGURE: BOUNDS ON CUT NUMBERS.

the

d-cube that k hyperplanes can cut. Obviously, C � d � $ k iff S � d � k ��
 d � 2d � 1. Importance of these values
S � d � k � to the cut number problem was first observed in [3], where the author strengthened his former

result [2] from “C � 4 � $ 3” to “S � 4 � 3 � !� 30 
 32 �	�E4 � ”. We recall some more facts regarding S � d � k � :
2.2 Lemma: Known Properties of Slicing Numbers.

a) S � d � k � � d � 2d � 1 with equality iff C � d � � k.

b) S � d � k � % k � 2d � 1 for k � d, attained by the cuts in (1).

c) S � d � k � 
 S � d � l � % S � d � k 
 l � % S � d � k � ; in particular S � d � k � � k � S � d � 1 � .
d) For k � 1, the values are well known [11]: S � d � 1 � � �

d � 2 � �
� d�
d � 2 ���

The lower bound in (2) emerges from

d � 2d � 1 a �� S & d � C � d � ) c �� C � d � � S � d � 1 � d �� C � d � � � d � 2 � ��� d�
d � 2 ��� (3)

Its weakness is at hand: Relation (3) presumes the k different cuts to slice disjoint subsets of edges. This
worst case does occur for example in the cuts given by (1). But starting with d � 6, these cuts are not
optimal; and Paterson’s optimal 5 cuts (of cardinalities 48+52+52+60+60=272) through the 192 edges of
the 6-cube obviously have a large number of overlaps.

Hence the bound in (3) gives a far over-estimate, and better knowledge about S � d � k � immediately yields
improved bounds for C � d � .
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3 Results
In [15], the authors developed computational methods for determining the cut number of the 5-cube. This

provided a means to prove 4
!
 C � 5 � � C � 6 � � C � 7 � � C � 8 � , which implies

S � 5 � 4 ��
 �E5 � � 80 � S � 6 � 4 � 
 �E6 � � 192 � S � 7 � 4 � 
 �E7 � � 448 � and S � 8 � 4 � 
 �E8 � � 1024  
In the present work, we strengthen these results by showing

S � 5 � 4 � � 78 � 181 � S � 6 � 4 � � 187 � 410 � S � 7 � 4 � � 436 � and 908 � S � 8 � 4 � � 996  
To this end, we enhanced the algorithms from [15] using techniques from [12]. The computational ap-
proach furthermore allows us to determine the exact values of all slicing numbers in dimension 5 (about
which hardly anything was known before) as well as S � 6 � 3 � and S � 7 � 2 � . Our algorithms have an overall

time-complexity of 2O
�
k � d2 � , thus posing hard limits on the tractability of higher dimensions and more

cuts. However in connection with the following lemma, the computational results yield lower and upper
bounds also for such cases.

3.1 Lemma: New Properties of Slicing Numbers

e) S � d � k � %
k � 1

∑
i � 0

� d 
 i
2 � ��� d� d � i

2 � � for k � d.

f) S � d � k � ��� S � d 
 1 � k � � 2d � � d 
 1 �	�
g) S � n 
 m � k 
 l � % S � n � k � � 2m 
 S � m � l � � 2n , and thus by induction

h) S & ∑di � ∑ki ) % & ∏2di ) � ∑S � di � ki � � 2di , S � nd � nk � % n2
�
n � 1 � d � S � d � k �

Proof: The following hyperplanes cut between neighbouring levels of the cube, that is, sets of vertices
with the same number of coordinates equal to 1:

H j ��
 x ��� d : ∑
i

xi � j � � j ��
 
 1 �"
 1 �	� 3 �! " " (�	� � d 
 3 ����� � d 
 1 � : d even
0 ��
 2 �"
 2 �	� 4 �" ! " (�	� � d 
 3 � �	� � d 
 1 � : d odd

(4)

It is easy to see that the i-th cut slices exactly
� d 
 i

2 � � � d� d � i
2 � � many edges, and different cuts slice

disjoint sets of edges.
To show f), consider k cuts in the d-cube which slice the maximum number S � d � k � of edges. From

these sliced edges, let mi count those which belong to the i-th facet, i.e., the � d 
 1 � -dimensional subcube
for i � 1  " ! 2d. As any edge is contained in exactly d 
 1 such facets, we have

� d 
 1 � � S � d � k � �
2d

∑
i � 1

mi �
2d

∑
i � 1

S � d 
 1 � k � � 2d � S � d 
 1 � k �  
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For g) consider the � n 
 m � -cube and, for each
� x1 �"   � xm � � Vm, the subcube � x1 �!   � xm ��� Vn. Extend the
k hyperplanes for the n-cube to these 2m n-dimensional
parallel subcubes according to the figure to the right. That
way, we slice S � n � k � � 2m edges. Each such edge belongs
to some fixed subcube � x1 �!   � xm ��� Vn and consequently
runs in direction (along dimension) i where m 
 1 � i �
m 
 n.

= +

→

Similarly, the l cuts in the m-cube can be extended to slice S � m � l � � 2n edges of the � n 
 m � -cube; these
edges run in directions 1 �! " ! !� m. The sets of edges sliced by the first k and the second l extended cuts,
respectively, are obviously disjoint: they differ in the directions they run.

Property g) strengthens well-known subadditivity of the cut number function [14]. Indeed, ‘C � d1 
 d2 � �
C � d1 � 
 C � d2 � ’ is now re-obtained as immediate consequence of g) and a): Set n : � d1, m : � d2, k : � C � n � ,
l : � C � m � and observe that

� n 
 m � � 2n � m � 1
a �% S � n 
 m � k 
 l � g �% S � n � k � � 2m 
 S � m � l � � 2n a �� n � 2n � 1 � 2m 
 m � 2m � 1 � 2n

Since both ends coincide, we have equality S � n 
 m � k 
 l � � � n 
 m �#� 2n � m � 1 and thus C � d1 � 
 C � d2 � de f�
k 
 l

a �% C � n 
 m � de f� C � d1 
 d2 � . Let us point out that this also shows that the estimate g) cannot be
improved in general; neither can f) as seen from inserting k : � C � d 
 1 � .

Similarly Property h) is stronger than (2) because it implies the latter:

6n � 26n � 1
a �% S � 6n � 5n � h �% n � 26

�
n � 1 � � S � 6 � 5 � � 6n � 26n � 1 a ���� C � 6n � � 5n  

We now proceed to state the main result of this work:
3.2 Theorem: Main Result
The following bounds hold for S � d � k � , d � 8. Bold face entries are new.

S � d � k � k � 1 2 3 4 5 6 7

d � 3 6 10 12 12 12 12 12

d � 4 12 24 30 32 32 32 32

d � 5 30 54 70 78 80 80 80

d � 6 60 120 160 % 181� 187
192 192 192

d � 7 140 260 % 350� 373
% 410� 436

% 434� 448
448 448

d � 8 280 560 % 770
� 852

% 908
� 996

% 980
� 1024

% 1008
� 1024

1024

3.3 TABLE: BOUNDS ON SLICING NUMBERS UP TO DIMENSION 8.
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Proof: The entries for d � 4 have been known before [3]; also we have those for k � 1 by d); and
S � d � k � � d � 2d � 1 for k % � 5

6 d � % C � d � by a) and (2). For k � 2 and even d,

2 � S � d � 1 � d �� � d
2 � � � d� d

2 � � 
 � d 
 1
2 � � � d� d � 1

2 � � e �� S � d � 2 � c �� 2 � S � d � 1 �  

Cuts listed in Table 3.4 and Table 3.6 slice 181 and 908 edges of ��
 1 ��
 1 � 6 and � 
 1 �(
 1 � 8, respectively.
This can be verified by hand or, more conveniently, on our interactive web page [16]. Property e) implies
S � 7 � 5 � % 434 and S � 8 � 6 � % 1008. The remaining lower bounds on S � d � k � are attained by taking Cut d  1
through Cut d  k from Table 3.7.

Some upper bounds can be deduced from lower dimensional cases using Property f), see Table 3.5.
The remaining upper bounds for S � 5 � 2 � , S � 5 � 3 � , S � 5 � 4 � , S � 6 � 3 � , and S � 7 � 2 � were obtained by computer
exhaustive search as described in Section 4.

0 � 
 1 
 2 � x1 
 2 � x2 
 2 � x3 
 4 � x4 
 2 � x5 
 2 � x6

0 � 1 
 2 � x1 
 2 � x2 
 2 � x3 
 4 � x4 
 2 � x5 
 2 � x6

0 � 
 4 
 5 � x1 
 5 � x2 
 5 � x3 
 6 � x4 
 6 � x5 
 10 � x6

0 � 2 
 4 � x1 
 4 � x2 
 4 � x3 
 5 � x4 
 3 � x5 
 7 � x6

3.4 TABLE: 4 CUTS SLICING 181 EDGES OF THE 6-CUBE.

S � 6 � 4 � ��� S � 5 � 4 � � 12 � 5 � � 187

S � 7 � 3 � ��� S � 6 � 3 � � 14 � 6 � � 373

S � 7 � 4 � ��� S � 6 � 4 � � 14 � 6 � � 436

S � 8 � 3 � ��� S � 7 � 3 � � 16 � 7 � � 852

S � 8 � 4 � ��� S � 7 � 4 � � 16 � 7 � � 996
3.5 TABLE: SOME UPPER BOUNDS.

0 � 
 1 
 2x1 
 2x2 
 2x3 
 2x4 
 2x5 
 4x6 
 2x7 
 2x8

0 � 1 
 2x1 
 2x2 
 2x3 
 2x4 
 2x5 
 4x6 
 2x7 
 2x8

0 � 
 4 
 5x1 
 5x2 
 5x3 
 5x4 
 5x5 
 6x6 
 6x7 
 10x8

0 � 2 
 4x1 
 4x2 
 4x3 
 4x4 
 4x5 
 5x6 
 3x7 
 7x8

3.6 TABLE: 4 CUTS SLICING 908 EDGES OF THE 8-CUBE.
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Cut 5.1 : 0 � x1 
 x2 
 x3 
 x4 
 x5

Cut 5.2 : 0 � 
 x1 
 x2 
 x3 
 x4 
 x5

Cut 5.3 : 0 � 3x1 
 x2 
 x3 
 x4 
 x5

Cut 5.4 : 0 � 
 3x1 
 x2 
 x3 
 x4 
 x5

Cut 6.1 : 0 � x2 
 x3 
 x4 
 x5 
 x6

Cut 6.2 : 0 � 2x1 
 x2 
 x3 
 x4 
 x5 
 x6

Cut 6.3 : 0 � 
 2x1 
 x2 
 x3 
 x4 
 x5 
 x6

Cut 7.1 : 0 � x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7

Cut 7.2 : 0 � 
 x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7

Cut 7.3 : 0 � 3x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7

Cut 7.4 : 0 � 
 3x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7

Cut 8.1 : 0 � x2 
 x3 
 x4 
 x5 
 x6 
 x7 
 x8

Cut 8.2 : 0 � 2x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7 
 x8

Cut 8.3 : 0 � 
 2x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7 
 x8

Cut 8.4 : 0 � 4x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7 
 x8

Cut 8.5 : 0 � 
 4x1 
 x2 
 x3 
 x4 
 x5 
 x6 
 x7 
 x8

3.7 TABLE: OTHER COMPUTER GENERATED CUTS.

3.8 Remark: Please notice a specialty in the proof to Theorem 3.2: For many lower bounds on
S � d � k 
 1 � and S � d � k � the corresponding sets of cuts are sort of incremental; to proceed from S � d � k 
 1 �
to S � d � k � , one more cut from Table 3.7 is added. The reader might thus be inclined to believe: Any k cuts
which slice the maximum number S � d � k � of edges

– can be reduced by one cut such that the remaining ones slice S � d � k 
 1 � edges;

– can be extended by a � k 
 1 � th cut to slice S � d � k 
 1 � edges.

Both conjectures however are wrong in general!

– No 2 of Paterson’s optimal 5 cuts attain the maximum S � 6 � 2 � � 120; they only reach 110.
– And any 3 cuts of the 5-cube, each one optimal in the sense of slicing S � 5 � 1 � � 30 edges, can

together only reach a total of 66 edges rather than 70 � S � 5 � 3 � .

4 Algorithms
Our software was run concurrently on 16 Athlontm K6 processors under Linux operating system. The
values S � 5 � 2 � , S � 5 � 3 � , S � 5 � 4 � , S � 6 � 3 � , and S � 7 � 2 � in Table 3.3 have been obtained within about 2 months
computation, a total of two and a half years CPU time!

A major property, invariance of the problem under cube symmetries was exploited to reduce the size
of the search spaces: If a given subset A of Ed can be sliced by k cuts, then so can the subset A

�
obtained

by arbitrarily permuting the d coordinates: � x1 �" ! " � xd ���� & xπ
�
1 � �! " ! !� xπ

�
d � ) ; similarly for some arbitrary

reflection � x1 �" " ! !� xi �" " ! "� xd ���� � x1 �! " ! !�!
 xi �! " " � xd � . By this observation it suffices to consider only (sets
of) cuts which are non-equivalent in the sense that they cannot be transformed into one each other by any
combination of symmetries.



New Bounds for Hypercube Slicing Numbers 161

After determining according to [15] all 2O
�
d2 � cuts of the d-cube and the corresponding subsets of Ed

they slice, we computed k-wise unions of these subsets. As explained above, one of the k components may
be restricted to non-equivalent cuts; the others however must each exhaust the full range. Being interested
merely in the maximum cardinality of these unions, a branch-and-bound strategy came in effect.

To compute S � 5 � 3 � and S � 5 � 4 � , we first applied dynamic programming techniques by determining all
(symmetrically non-equivalent maximal) subsets of E5 which can be sliced by two cuts. As the 5-cube
has 62 non-isomorphic and 47285 arbitrary cuts [16], this would expect a list of 62 � 47285 � 2931670
entries. Fortunately, many of them are either symmetrically equivalent or non-maximal or both: after
removing these occurrences, only 150375 entries remained. This drastically reduced the search spaces
for S � 5 � 3 � and S � 5 � 4 � .

For d $ 5, such an approach was not possible any more, it simply exceeded our resources: Removing
symmetrically equivalent or non-maximal entries on its own is a computationally expensive and memory-
consuming task which furthermore cannot efficiently be parallelized.

Thus for S � 6 � 3 � , we had no other choice than skim through all 566 � 7  5M � 7  5M � 30T combinations
of cuts, each one represented by a subset of the 6 � 26 � 1 � 192 hypercube edges. Consequently this was
the most time consuming task in our computations. Distributed on 16 machines, it took about 6 weeks of
the total two months.

Starting with S � 6 � 4 � , the number of cases would become too large for exhaustive search. On the other
hand, processing appropriate parts of the whole search space only, gives at least lower bounds. For this
purpose it turned out a good heuristics to consider unions of large cuts, i.e., those which attain (or come
close) to the largest possible cut of cardinality S � d � 1 � . Note that this is only heuristics, see Remark 3.8.

5 Conclusion
This work refined the well-known cut number problem ‘how many cuts are needed to slice all edges’ to
slicing numbers: ‘how many edges can be sliced by a given number of cuts’. Computational methods
[12] yielded new lower and upper bounds for small dimensions and number of cuts. These bounds were
then extended to higher dimensions using combinatorial techniques (Lemma 3.1).

Although limited to low dimensions, we believe that the computational approach can reveal important
insights and raise seminal conjectures on the behavior of the function S � d � k � which, in turn, is tightly
related to the cut number C � d � . Is it true, for example, that all values S � d � k � are even? In other words: If
an odd subset of Ed is sliced by k hyperplanes, can one always add another edge to this set?

On the other hand, full power of computer aided research can only be exploited in connection with
‘classical’ theoretical considerations. Recall the cuts in Table 3.7 which in our opinion are very interesting
for two reasons:

– Except for S � 6 � 4 � and S � 8 � 4 � , all new lower bounds in Table 3.3 arise from these cuts. In other
words: For most cases, they yield the largest known number of sliced edges.

– They generalize to arbitrary dimension d and k � d, i.e., they form an entire class:

H j � 
 x ��� d : 0 �
d � 1

∑
i � 1

xi 
 j � xd � � j ��
 
 1 �"
 1 �(
 3 �!
 3 �" ! " : d odd
0 ��
 2 �"
 2 �(
 4 �"
 4 �" ! " : d even

(5)

We therefore believe these cuts deserve further analysis, and it was a computer that found them!
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Let us once more emphasize that nearly all lower bounds in Table 3.3 are attained by cuts either from
(4) or (5). Among the only three exceptions are S � 6 � 5 � and S � 6 � 4 � which arise from the cuts of Paterson
and in Table 3.4, respectively. Their ‘singularity’ seems to be related to the ‘anomality’ C � 5 � � C � 6 �
mentioned in Section 2; and it might indicate another anomality to happen at C � 7 � � C � 8 � as the third
exception S � 8 � 4 � comes from the singular cut in Table 3.6.

The reader is invited to try own cuts for better lower bounds. Here again, a computer can give consid-
erable support by releasing from the stupendous routine of determining and counting those edges which
are sliced: Our web page [16] allows to interactively experiment with combinations of different cuts.

One of the authors‡ wishes to fix a typographical error on his paper [3]. The last sentence of page 195
is not part of the omitted proof. The sentence, as a new paragraph, should be:

“However, it is easy to check that there are 4 copies of H0 that can
cover all the edges of a 3-face and all of its exterior edges in c5.”
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