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It is increasingly common to encounter time-varying random fields on networks (metabolic networks, sensor arrays,
distributed computing, etc.). This paper considers the problem of optimal, nonlinear prediction of these fields, show-
ing from an information-theoretic perspective that it is formally identical to the problem of finding minimal local
sufficient statistics. I derive general properties of these statistics, show that they can be composed into global pre-
dictors, and explore their recursive estimation properties. For the special case of discrete-valued fields, I describe a
convergent algorithm to identify the local predictors from empirical data, with minimal prior information about the
field, and no distributional assumptions.
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1 Introduction
Within the field of complex systems, most interest in networks has focused either on their structural
properties (Newman, 2003), or on the behavior of known dynamical systems coupled through a network,
especially the question of their synchronization (Pikovskyet al., 2001). Statistical work, ably summarized
in the book by Guyon (1995), has largely (but not exclusively) focused on characterization and inference
for static random fields on networks. In this paper, I consider the problem of predicting the behavior of
a random field, with unknown dynamics, on a network of fixed structure. Adequate prediction involves
reconstructing those unknown dynamics, which are in general nonlinear, stochastic, imperfectly measured,
and significantly affected by the coupling between nodes in the network. Such systems are of interest in
many areas, including biochemistry (Bower and Bolouri, 2001), sociology (Young, 1998), neuroscience
(Dayan and Abbott, 2001), decentralized control (S̆ijlak, 1990; Mutambara, 1998) and distributed sensor
systems (Varshney, 1997). Cellular automata (Ilachinski, 2001) are a special case of such systems, where
the graph is a regular lattice.

There are two obvious approaches to this problem of predicting network dynamics, which is essentially
a problem of system identification. One is to infer a global predictor, treating entire field configurations as
measurements from a time series; this is hugely impractical, if only because on a large enough network,
no configuration ever repeats in a reasonable-sized data sample. The other straightforward approach is
to construct a distinct predictor for each node in the network, treating them as so many isolated time-
series. While more feasible, this misses any effects due to the coupling between nodes, which is a serious
drawback. In these contexts, we often know very little about the causal architecture of the systems we are
studying, but one of the things we do know is that the links in the network are causally relevant. In fact,
it is oftenpreciselythe couplings which interest us. However, node-by-node modeling ignores the effects
of the couplings, which then show up as increased forecast uncertainty at best, and systematic biases at
worst. We cannot guarantee optimal prediction unless these couplings are taken into account. (See the
end of Section 3.1.) I will construct a distinct predictor for each node in the network, but these predictors
will explicitly take into account the couplings between nodes, and use them as elements in their forecasts.

By adapting tools from information theory, I construct optimal, nonlinearlocal statistical predictors for
random fields on networks; these take the form of minimal sufficient statistics. I describe some of the
optimality properties of these predictors, and show that the local predictors can be composed into global
predictors of the field’s evolution. Reconstructing the dynamics inevitably involves reconstructing the
underlying state space, and raises the question of determining the state from observation, i.e., the problem
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of filtering or state estimation. There is a natural translation from the local predictors to a filter which
estimates the associated states, and is often able to do so withno error. I establish that it is possible to
make this filter recursive without loss of accuracy, and show that the filtered field has some nice Markov
properties. In the special case of a discrete field, I give an algorithm for approximating the optimal
predictor from empirical data, and prove its convergence.

Throughout, my presentation will be theoretical and abstract; for the most part, I will not deal with
practical issues of implementing the method. In particular, I will slight the the important question of how
much data is needed for reliable prediction. However, the methodhasbeen successfully applied to fields
on regular lattices (see Section 5 below).

I will make extensive use of (fairly basic) information theory and properties of conditional indepen-
dence relations, and accordingly will assume some familiarity with conditional measures. I will not pay
attention to measure-theoretic niceties, and shall assume that the random field is sufficiently regular that
all the conditional measures I invoke actually exist and are conditional probability distributions. Readers,
for their part, may assume all functions to be measurable functions.

The next section of the paper establishes the basic setting, notation, and preliminary results, the latter
mostly taken without proof from standard references on information theory and conditional independence.
Section 3 constructs the local predictors and establishes their main properties. Section 4 establishes the
results about transitions between states which are related to recursive filtering. Section 5 discusses an
algorithm for identifying the states from empirical data on discrete fields.

2 Notation and Preliminaries
2.1 The Graph and the Random Field X(〈v, t〉)
Consider a fixed graph, consisting of a set of nodes or verticesV, and undirected edges between the nodes
E. An edge is an ordered pair(v1,v2), indicating that it is possible to go directly fromv1 to v2; the set of
edges is thus a binary relation on the nodes. We indicate the presence of this relation, i.e. of a direct path,
by v1Ev2; since the edges are undirected, this implies thatv2Ev1. There is a path of lengthk between two
nodes ifv1Ekv2. In addition to the graph, we have a time coordinate which proceeds in integer ticks:t ∈N
or∈ Z. We need a way to refer to the combination of a vertex and a time; I will call this apoint, and write
it using the ordered pair〈v, t〉.

At each point, we have a random variableX(〈v, t〉), taking values in the setA , a “standard alphabet”
(Gray, 1990), such as a set of discrete symbols or a finite-dimensional Euclidean vector space; this is
the random field. Letc be the maximum speed of propagation of disturbances in the field. Now define
the past light-coneof the point〈v, t〉 as the set of all points where the field could influence the field at
〈v, t〉 (including〈v, t〉); likewise thefuture light-coneis all the points whose fields could be influenced by
the field at〈v, t〉 (excluding〈v, t〉). We will mostly be concerned with the configurations in these light-
cones, rather than the sets of points themselves; the configurations in the past and future light-cone are
respectively

L−(〈v, t〉) ≡
⋃
τ≥0

{
X(〈u, t− τ〉)

∣∣∣∣∣k=cτ∨
k=0

uEkv

}
and (1)

L+(〈v, t〉) ≡
⋃
τ≥1

{
X(〈u, t + τ〉)

∣∣∣∣∣k=cτ∨
k=0

vEku

}
. (2)
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Fig. 1: Schematic of the light-cones of node〈v, t〉. Time runs vertically downward. For visual simplicity, vertices
are drawn as though the graph was a one-dimensional lattice, but no such assumption is necessary. The gray circles
denote the past light-cone of〈v, t〉, and the white ones its future light-cone. Note that〈v, t〉 is included in its past
light-cone, resulting in a slight asymmetry between the two cones.

Figure 1 is a schematic illustration of the past and future light-cones‡ There is a certain distribution over
future light-cone configurations, conditional on the configuration in the past; this is P(L+(〈v, t〉)|L−(〈v, t〉) =
l−), which I shall abbreviate P(L+|l−). Note that, in general, the light-cones of distinct vertices have com-
pletely different shapes, and so neither their configurations nor the distribution over those configurations
are comparable.

2.2 Mutual Information
The mutual information between two random variablesX andY is

I [X;Y] ≡ EX,Y

[
log2

P(X = x,Y = y)
P(X = x)P(Y = y)

]
, (3)

whereE is mathematical expectation, and P is the probability mass function for discrete variables, and the
probability density function for continuous ones. That is, it is the expected logarithm of the ratio between
the actual joint distribution ofX andY, and the product of their marginal distributions.I [X;Y] ≥ 0, and
I [X;Y] = 0 if and only ifX andY are independent.

The conditional mutual informationI [X;Y|Z], is

I [X;Y|Z] ≡ EX,Y,Z

[
log2

P(X = x,Y = y|Z = z)
P(X = x|Z = z)P(Y = y|Z = z)

]
(4)

Conditional mutual information is also non-negative.
We will need only two other properties of mutual information. The first is called the “data-processing

inequality”. For any functionf ,

I [ f (X);Y] ≤ I [X;Y] and (5)

‡ The term “light-cone” is used here in analogy with relativistic physics, but it’s just an analogy.
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I [ f (X);Y|Z] ≤ I [X;Y|Z] . (6)

The other is called the “chain rule”.

I [X,Z;Y] = I [X;Y]+ I [Z;Y|X] (7)

For more on the nature and uses of mutual information, and proofs of Equations 5–7, see any text on
information theory, e.g. Gray (1990).

2.3 Conditional Independence
Two random variables,X andY, are conditionally independent given a third,T, in symbolsX |= Y|T, when

P(X,Y|T) = P(X|T)P(Y|T) . (8)

X |= Y|T if and only if

P(Y|X,T) = P(Y|T) and (9)

I [X;Y|T] = 0 . (10)

Conditional independence has many implicative properties; we will use some of the standard ones,
proofs of which may be found in any book on graphical models (Lauritzen, 1996; Pearl, 2000; Spirtes
et al., 2001).

(A |= B|CD)∧ (A |= D|CB) ⇒ (A |= BD|C) (11)

(A |= BC|D) ⇒ (A |= B|CD) (12)

(A |= B|C)∧ (A |= D|CB) ⇒ (A |= BD|C) (13)

Sadly,

(A |= B) 6⇒ (A |= B|C) (14)

(A |= B|C) 6⇒ (A |= B|CD) (15)

The following property, while not included in most lists of conditional independence properties, is of
some use to us:

(A |= B|C) ⇒ (A |= f (B)|C) (16)

for any nonrandom functionf . It is a direct consequence of the non-negativity of conditional mutual
information, and Equations 6 and 10.

2.4 Predictive Sufficient Statistics
Any function on the past light-cone defines alocal statistic, offering some summary of the influence of
all the points which could affect what happens at〈v, t〉. A good local statistic conveys something about
“what comes next”, i.e.,L+. We can quantify this using information theory.

To be slightly more general, suppose we know the random variableX and wish to predictY. Any
function f (X) defines a new random variableF = f (X) which is astatistic. BecauseF is a function ofX,
the data processing inequality (Equation 5) saysI [Y;F ]≤ I [Y;X].



16 Cosma Rohilla Shalizi

Definition 1 (Sufficient Statistic) A statistic F= f (X) is sufficientfor Y when I[Y;F ] = I [X;F ].

A sufficient statistic, that is to say, is one which is as informative as the original data. While I will not
elaborate on this here, it is very important to remember that any prediction method which uses a non-
sufficient statistic can be bettered by one which does. No matter what the loss function for prediction,
the optimal predictor can always be implemented by an algorithm which depends solely on a sufficient
statistic (Blackwell and Girshick, 1954).

Here are two important criteria, and consequences, of sufficiency.

Proposition 1 F is a sufficient statistic, as in Definition 1, if and only if,∀x,

P(Y|X = x) = P(Y|F = f (x)) . (17)

See Kullback (1968, Sections 2.4 and 2.5). (Some authors prefer to use this as the definition of suffi-
ciency.)

Lemma 1 F is a sufficient statistic if and only if X and Y are conditionally independent given F, i.e.,
X |= Y|F.

Proof. “Only if”: begin with the observation that

P(Y|X, f (X)) = P(Y|X) , (18)

no matter what the function§. Hence P(Y|X,F) = P(Y|X). But if Y |= X|F , then P(Y|X,F) = P(Y|F).
Hence P(Y|X) = P(Y|F). “If”: start with P(Y|F) = P(Y|X). As before, by Equation 18, sinceF = f (X),
P(Y|X) = P(Y|X,F). Hence P(Y|F) = P(Y|X,F), so (Eq. 9),X |= Y|F . 2

While all sufficient statistics have the same predictive power, they are not, in general, equal in other
respects. In particular, some of them make finer distinctions among past light-cones than others. Since
these are distinctions without a difference, we might as well, in the interests of economy, eliminate them
when we find them. The concept of aminimalsufficient statistic captures the idea of eliminating all the
distinctions we can get rid off, without loss of predictive power.

Definition 2 (Minimal Sufficiency) F is aminimal sufficient statisticfor predicting Y from X if and only
if it is sufficient, and it is a function of every other sufficient statistic.

3 Construction and Properties of Optimal Local Predictors
3.1 Minimal Local Sufficient Statistics
We have observed that for each past light-cone configurationl− at a point, there is a certain conditional
distribution over future light-cone configurations, P(L+|l−). Let us say that two past configurations, or
“pasts”, are equivalent if they have the same conditional distribution,

l−1 ∼ l−2 ⇔ P(L+|l−1 ) = P(L+|l−2 ) (19)

Let us write the equivalence class ofl−, that is, the set of all pasts it is equivalent to, as[l−]. We now
define a local statistic, which is simply the equivalence class of the past light-cone configuration.

§ Let A = σ(X) be the sigma-algebra generated byX, andB = σ( f (X)). ClearlyB ⊆ A , soσ(X, f (X)) = AB = A = σ(X). Thus,
the sigma-algebra involved when we condition onX is the same as when we condition onX and f (X) at once.
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Definition 3 (Local Causal State) The local causal state at〈v, t〉, written S(〈v, t〉), is the set of all past
light-cones whose conditional distribution of future light-cones is the same as that of the past light-cone
at 〈v, t〉. That is,

S(〈v, t〉) = ε(l−) ≡ [l−] (20)

=
{

λ
∣∣P(L+|λ) = P(L+|l−)

}
(21)

The name “causal state” was introduced for the analogous construction for time series by Crutchfield
and Young (1989). I will continue to use this term here, for two reasons. First, without getting into the
vexed questions surrounding the nature of causality and the properties of causal relations, it is clear that the
causal states have at least the “screening” properties (Salmon, 1984) all authorities on causality require,
and may well have the full set of counter-factual or “intervention” properties demanded by Pearl (2000)
and Spirteset al.(2001). (When and whether they meet the stricter criteria is currently an open question.)
Second, and decisively, these objects need a name, and the previous terms in the literature, like “action-
test pairs in a predictive state representation” (Littmanet al., 2002), “elements of the statistical relevance
basis” (Salmon, 1984), or “states of the prediction process” (Knight, 1975), are just too awkward to use.

Theorem 1 (Sufficiency of Local Causal States)The local causal states are sufficient.

Proof: First, we will find the distribution of future light-cone configurations conditional on the causal
state. Clearly, this is the average over the distributions conditional on the past light-cones contained in the
state. (See Lóeve (1955, Section 25.2) for details.) Thus,

P(L+|S= s) =
∫

λ∈ε−1(s)
P(L+|L− = λ)P(L− = λ|S= s)dλ . (22)

By construction, P(L+|L− = λ) is the same for allλ in the domain of integration, so, picking out an
arbitrary representative elementl−, we pull that factor out of the integral,

P(L+|S= s) = P(L+|L− = l−)
∫

λ∈ε−1(s)
P(L− = λ|S= s)dλ . (23)

But now the integral is clearly 1, so, for alll−,

P(L+|S= ε(l−)) = P(L+|L− = l−) . (24)

And so, by Proposition 1,S is sufficient. 2

Corollary 1 The past and future light-cones are independent given the local causal state.

Proof: Follows immediately from the conclusion of the theorem and Lemma 1. 2

Corollary 2 Let K be the configuration in any part of the future light-cone. Then, for any local statistic
R,

I [K;R] ≤ I [K;S] . (25)

This corollary is sometimes useful becauseI [L+;R] can be infinite for all non-trivial statistics.
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Theorem 2 (Minimality of Local Causal States) The local causal state is a minimal sufficient statistic.

Proof: We need to show that, for any other sufficient statisticR = η(L−) there is a functionh such
thatS= h(R). From Proposition 1 P(L+|R= η(l−)) = P(L+|l−). It follows thatη(l−1 ) = η(l−2 ) only if
P(L+|l−1 ) = P(L+|l−2 ). This in turn implies thatl−1 ∼ l−2 , and soε(l−1 ) = ε(l−2 ). Thus, all histories with a
common value ofη(l−) also have the same value ofε(l−), and one can determineS from R. Hence the
required function exists. 2

Corollary 3 (Uniqueness of the Local Causal States)If R = η(L−) is a minimal local sufficient statis-
tic, thenη andε define the same partition of the data.

Proof: SinceS is a minimal statistic, it is a function ofR, and for some functionh, S= h(R). But
sinceR is also minimal, there is a functiong such thatR = g(S). Henceε(l−1 ) = ε(l−2 ), if and only if
η(l−1 ) = η(l−2 ). 2

In the introduction, I claimed that if we tried to predict the future of the network by building a separate
model for each vertex, taken in isolation, the results would generally be sub-optimal. Theorem 2 and
Corollary 3 vindicate this claim. The only way predictions based on the vertex-by-vertex procedure could
be as good as ones based on the full light-cone is ifall of the rest of the light-cone wasalwaysirrelevant.
This would mean that there was, effectively, no coupling whatsoever between the vertices.

3.2 Statistical Complexity of the Field
Much thought has gone into the problem of defining a measure of complexity that is not simply a measure
of randomness, as are Shannon entropy and the algorithmic information (Badii and Politi, 1997). Perhaps
the best suggestion is the one which seems to have originated with Grassberger (1986), that the complexity
of a system is the minimal amount of information about its state needed for optimal prediction. This
suggests, following Crutchfield and Young (1989), that we identify the complexity of the system with the
amount of information needed to specify its causal state. Crutchfield and Young called this quantity the
statistical complexity.

In the case of random fields, it is more appropriate to look at a local, point-by-point version of this
quantity. That is, thelocal statistical complexityis

C(〈v, t〉) ≡ I [S(〈v, t〉);L−(〈v, t〉)] . (26)

Dropping the argument, we see that because of Equation 5 and the fact thatS is a minimal statistic,

I [R;L−] ≥ C (27)

for any other sufficient statisticR. In fact, one can start with Equations 25 and 27, maximal predictive
power and minimal complexity, as axioms, and from them derive all the properties of the local causal
states (Shalizi and Crutchfield, 2001).

A useful property of the statistical complexity is that it provides an upper bound on the predictive
information.

I [L+;L−] ≤ I [L−;S] (28)

Proof: Use the chain rule for information, Equation 7.

I [S,L+;L−] = I [S;L−]+ I [L+;L−|S] (29)

= I [S;L−] , (30)
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since Corollary 1 and Equation 10 implyI [L+;L−|S] = 0. Using the chain rule the other way,

I [S,L+;L−] = I [L+;L−]+ I [S;L−|L+] (31)

≥ I [L+;L−] , (32)

sinceI [S;L−|L+]≥ 0.
Shalizi and Crutchfield (2001) give detailed arguments for whyC is the right way to measure complex-

ity; here I will just mention two more recent applications. First, when our random field can be interpreted
as a macroscopic variable which is a coarse-graining of an underlying microscopic system, as in statistical
mechanics, thenC is the amount of information the macro-variable contains about the micro-state (Shalizi
and Moore, 2003). Second, the rate of change ofC over time provides a quantitative measurement of
self-organization in cellular automata (Shalizi and Shalizi, 2003).

3.3 Composition of Global Predictors from Local Predictors

We have just seen that, if we are interested in the future of an individual point, we can do optimal predic-
tion with only a knowledge of its local causal state. One might worry, however, that in compressing the
past light-cone down to the causal state, we have thrown away information that would be valuable on a
larger scale, that would help us if we wanted to predict the behavior of multiple vertices. In the limit, if
we wanted to predict the behavior of the entire network, and had only the local causal states available to
us, how badly would we be hampered?

To address these issues, let us turn our thoughts from a single point to a connected set of vertices taken
at a common timet, or apatch. The patch has a past and future light-cone (P− andP+, respectively),
which are just the unions of the cones of its constituent points. Just as we did for points, we can construct
a causal state for the patch, which we’ll call thepatch causal state, which has all the properties of the
local causal states. We now ask, what is the relationship between the local causal states of the points in
the patch, and the patch causal state? If we try to predict the future of the patch using just the local states,
are our predictions necessarily impaired in any way?

The answer, it turns out, isno.

Lemma 2 (Patch Composition) The causal state of a patch at one time is uniquely determined by the
composition of all the local causal states within the patch at that time.

Proof: We will show that the composition of local causal states within the patch is a sufficient statistic
of the patch, and then apply minimality.

Consider first a patch consisting of two spatially adjacent points,〈u, t〉 and〈v, t〉. Define the following
variables:

C− = L−(〈u, t〉)∩L−(〈v, t〉)
U− = L−(〈u, t〉)\C−

V− = L−(〈v, t〉)\C−

ThusL−(〈u, t〉) = U−∪C−, and likewise forL−(〈v, t〉). DefineU+, C+ andV+ similarly. (Figure 2 gives
a picture of these regions.) Now consider the configurations in these regions. We may draw a diagram of
effects or influence, Figure 3, which should not be confused with the graph of the network.
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Fig. 2: The space-time regions for a two-point patch. Points which belong exclusively to the light-cones of the point
on the left (〈u, t〉) are shaded light grey; those which belong exclusively to the light-cones of the other point (〈v, t〉)
are shaded dark grey. The areas of overlap (C− andC+) is white. Note that, by the definition of light-cones, the
configuration inU− can have no effect on that inV+ or vice versa.

U-

S(<u,t>)

C-

S(<v,t>)

V-

U+ C+ V+

Fig. 3: Diagram of effects for the two-node patch. Arrows indicate the direction of influence; causes to effects; the
absence of an arrow between two nodes indicates an absence of direct influence.

Corollary 1 tells us that every path fromU− or C− to U+ must go throughS(〈u, t〉). By the very
definition of light-cones, there cannot be a path linkingV− to U+. Therefore there cannot be a link from
S(〈v, t〉) to U+. (Such a link would in any case indicate thatU+ had a dependence onC− which was not
mediated byS(〈u, t〉), which is false.) All of this is true,mutatis mutandis, for V+ as well.

Now notice that every path from variables in the top row — the variables which collectively consti-
tuteP− — to the variables in the bottom row — which collectively areP+ — must pass through either
S(〈u, t〉) or S(〈v, t〉). The setZ = {S(〈u, t〉),S(〈v, t〉)} thus “blocks” those paths. In the terminology of
graphical models (Pearl, 2000, p. 18),Z d-separates P− andP+. But d-separation implies conditional
independence (ibid.). ThusP− andP+ are independent given the composition ofS(〈u, t〉) andS(〈v, t〉).
But that combination is a function ofP−, so Lemma 1 applies, telling us that the composition of local
states is sufficient. Then Theorem 2 tells us that there is a function from the composition of local states to
the patch causal state.

Now, the reader may verify that this argument would work if one of the two “nodes” above was really
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itself a patch. That is, if we break a patch down into a single node and a sub-patch, and we know their
causal states, the causal state of the larger patch is fixed. Hence, by mathematical induction, if we know
all the local causal states of the nodes within a patch, we have fixed the patch causal state uniquely.2

Theorem 3 (Global Prediction) The future of the entire network can be optimally predicted from a
knowledge of all the local causal states at one time.

Proof: Sufficiency, as we’ve said, implies optimal prediction. Let us check that the combination of all
the local causal states is a sufficient statistic for the global configuration. Apply Lemma 2 to the patch of
the entire lattice. The proof of the lemma goes through, because it in no way depends on the size or the
shape of the past, or even on the patch being finite in extent. Since the patch causal state for this patch
is identical with the global causal state, it follows that the latter is uniquely fixed by the composition of
the local causal states at all points on the lattice. Since the global causal state is a sufficient statistic, the
combination of all local causal states is too. 2

Thus, remarkably enough, the local optimal predictors contain all the information necessary for global
optimal prediction as well. There doesn’t seem to be any way to make this proof work if the local predic-
tors are not based on the full light-cones.

4 Structure of the Field of States S(〈v, t〉)
Let us take a moment to recap. We began with a dynamic random fieldX on the network. From it, we
have constructed another random field on the the same network, the field of the local causal statesS.
If we want to predictX, whether locally (Theorem 1) or globally (Theorem 3), it is sufficient to know
S. This situation resembles attractor reconstruction in nonlinear dynamics (Kantz and Schreiber, 1997),
state-space models in time series analysis (Durbin and Koopman, 2001), and hidden Markov models in
signal processing (Elliotet al., 1995). In each case, it helps, in analyzing and predicting our observations,
to regard them as distorted measurements of another, unseen set of state variables, which have their own
dynamics. Let us, therefore, call all these things “hidden-state models”.

The hidden state space always has a more tractable structure than the observations, e.g., the former is
Markovian, or even deterministic, but the latter is not. Now, usually the nice structure is simplydemanded
by us a priori, and it is an empirical question whether the demand can be met, whether any hidden-state
model with that structure can adequately account for our observations. However, in the case of time
series, one canconstructhidden states, analogous to those built in Section 3, and show that thesealways
have nice structural properties: they are always homogeneous Markov processes, and so forth (Knight,
1975; Shalizi and Crutchfield, 2001). This analogy gives us reason to hope that the causal states we have
constructed always have nice properties, which is indeed the case.

In this section, I am going to establish some of the structural properties of the field of causal states,
which involve the relations between states at different points. Section 4.1 shows how the state at one
point may be used to partially determine the state at other points. Section 4.2 applies those results to the
problem of designing a filter to estimate the state fieldSfrom the observation fieldX. Finally, Section 4.3
considers the Markov properties of theSfield. Note that, if we tried to build a hidden-state model for each
vertex separately, the result would lack thesespatialproperties, as well as being a sub-optimal predictor
(see the end of Section 3.1).
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4.1 Transition Properties
The basic idea motivating this section is that the local causal state at〈v, t〉 should be an adequate summary
of L−(〈v, t〉) for all purposes. We have seen that this is true for both local and non-local prediction. Here
we consider the problem of determining the state at another point〈u,s〉, s≥ t. In general, the past light-
cones of〈v, t〉 and〈u,s〉 will overlap. If we haveS(〈v, t〉), and wantS(〈u,s〉), do we need to know the
actual contents of the overlapping region, or can we get away with just knowingS(〈v, t〉)?

It seems clear (and we will see that it is true) that determiningS(〈u,s〉) will require knowledge of the
“new” observations, the ones which are in the past light-cone of〈u,s〉 but not inL−(〈v, t〉). This data is
relevant to〈u,s〉, but inaccessible at〈v, t〉, and couldn’t be summarized inS(〈v, t〉). This data also needs a
name; let us call it thefringeseen when moving from〈v, t〉 to 〈u,s〉. (See Figures 2 and 4.)

The goal of this section is to establish thatS(〈u,s〉) is completely determined byS(〈v, t〉) and the fringe.
The way I do this is to show thatL+(〈u,s〉) andL−(〈u,s〉) are independent, conditional onS(〈v, t〉) and the
fringe. This means that the latter two, taken together, are a sufficient statistic, and then I invoke Theorem
2. An alternate strategy would be to consider a transducer whose inputs are fringes, read as the transducer
moves across the graph, and whose outputs are local states. Our problem then would be to show that
the transducer’s transition rules can always be designed to ensure that the states returned track the actual
states. This way of framing the problem opens up valuable connections to the theory of spatial automata
and spatial languages (Lindgrenet al., 1998), but I prefer a more direct approach by way of conditional
independence.

Even so, the proof is frankly tedious. First, I show that the desired property holds if we consider
successive states at the same vertex. Next, I show that it holds for simultaneous states at neighboring
vertices. Then I extend those results to relate states at points connected by an arbitrary path in space and
time. Finally, I show that the result is independent of the precise path chosen to link the points. Sadly, I
have not been able to find a simpler argument.

4.1.1 Temporal Transitions
We want to move forward in time one step, while staying at the same vertex. Call the point we start at
〈v, t〉, and its successor〈v, t +1〉. The whole of the new future light cone is contained inside the old future
light cone, and vice versa for the past cones. So let’s define the following variables:

N− = L−(〈v, t +1〉)\L−(〈v, t〉)
M+ = L+(〈v, t〉)\L+(〈v, t +1〉) ;

N− is the fringe. (Figure 4 pictures these regions.)

Lemma 3 The local causal state at〈v, t +1〉 is a function of the local causal state at〈v, t〉 and the time-
forward fringe N−.

Proof. Start by drawing the diagram of effects (Figure 5).
M+ and L+(〈v, t +1〉) jointly constituteL+(〈v, t〉), so there must be paths fromS(〈v, t〉) to both of

them. Now,S(〈v, t +1〉) rendersL−(〈v, t +1〉) and L+(〈v, t +1〉) conditionally independent. Hence it
should d-separate them in the graph of effects. ButL−(〈v, t〉) is part ofL−(〈v, t +1〉) and has a direct
path toS(〈v, t〉). This means that there cannot be a direct path fromS(〈v, t〉) to L+(〈v, t +1〉); rather,
the path must go throughS(〈v, t +1〉). (We indicate this in the graph by a dotted arrow fromS(〈v, t〉) to
L+(〈v, t +1〉). Similarly, L−(〈v, t〉) certainly helps determineS(〈v, t +1〉), but it need not do so directly.
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v

Fig. 4: Space-time regions for the time-forward transition from〈v, t〉 to 〈v, t +1〉. Black points:L−(〈v, t〉), the past
light-cone of〈v, t〉. Dark grey:N−, the part ofL−(〈v, t +1〉), the past light-cone of〈v, t +1〉, outside the past light-
cone of〈v, t〉. Light grey: L+(〈v, t +1〉), the future light-cone of〈v, t +1〉. White: M+, the part ofL+(〈v, t〉) outside
L+(〈v, t +1〉).

In fact, it cannot:S(〈v, t〉) must d-separateL−(〈v, t〉) andL+(〈v, t〉), i.e., must d-separateL−(〈v, t〉) from
L+(〈v, t +1〉) andM+. Hence the influence ofL−(〈v, t〉) on S(〈v, t +1〉) must run throughS(〈v, t〉). (We
indicate this, too, by a dotted arrow fromL−(〈v, t〉) to S(〈v, t +1〉).)

Now it is clear that the combination ofS(〈v, t〉) andN− d-separatesL−(〈v, t +1〉) from L+(〈v, t +1〉),
and hence makes them conditionally independent. But now the usual combination of Lemma 1 and
Theorem 2 tell us that there’s a function fromS(〈v, t〉),N− to S(〈v, t +1〉). 2

4.1.2 Spatial Transitions
Lemma 4 Let〈u, t〉 and〈v, t〉 be simultaneous, neighboring points. Then S(〈v, t〉) is a function of S(〈u, t〉)
and the fringe in the direction from〈u, t〉 to 〈v, t〉, V−.

Here the breakdown of the past and future light-cone regions is the same as when we saw how to
compose patch causal states out of local causal states in Section 3.3, as is the influence diagram; we’ll
use the corresponding terminology, too. (See Figures 2 and 3, respectively.) What we hope to show here
is that conditioning on the combination ofS(〈u, t〉) andV− makesL+(〈v, t〉) independent ofV− andC−.
Unfortunately, as the reader may verify by inspecting the diagram, our conditional variables no longer
d-separate the other variables (since they have an unblocked connection throughS(〈v, t〉)). All is not lost,
however: d-separation implies conditional independence, but not conversely.

Abbreviate the pair of variables{S(〈u, t〉),V−} by Z. Now, S(〈v, t〉) is a (deterministic) function ofC−

andV−. Hence it is also a function ofZ andC−. Thus P(V+|S(〈v, t〉),Z,C−) = P(V+|Z,C−). But this
tells us that

V+ |= S(〈v, t〉)|Z,C− (33)

From d-separation, we also have
V+ |= C−|Z,S(〈v, t〉) (34)

Applying Eq. 11,
V+ |= S(〈v, t〉),C−|Z (35)
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L-(<v,t>) N-

S(<v,t>) S(<v,t+1>)

M+ L+(<v,t+1>)

Fig. 5: Influence diagram for the variables involved in a time-forward transition.

Applying Eq. 12,
V+ |= C−|Z (36)

SinceZ = Z,V−,
V+ |= C−|Z,V− (37)

The following conditional independence is odd-looking, but trivially true:

V+ |= V−|Z (38)

And it, along with Eq. 13, gives us
V+ |= C−,V−|Z (39)

A similar train of reasoning holds forC+. Thus, the entire future light cone of〈v, t〉 is independent
of that point’s past light cone, givenS(〈u, t〉) andV−. This tells us that{S(〈u, t〉),V−} is sufficient for
L+(〈v, t〉), henceS(〈v, t〉) is a function of it. 2

4.1.3 Arbitrary Transitions
Lemma 5 Let 〈u, t〉 and 〈v,s〉 be two points, s≥ t. Let Γ be a spatio-temporal path connecting the
two points, arbitrary except that it can never go backwards in time. Let FΓ be the succession of fringes
encountered alongΓ. Then S(〈v,s〉) is a function of S(〈u, t〉), Γ and FΓ,

S(〈v,s〉) = g(S(〈u, t〉),Γ,FΓ) (40)

for some function g.

Proof. Apply Lemma 3 or 4 at each step ofΓ. 2

Theorem 4 Let 〈u, t〉 and 〈v,s〉 be two points as in the previous lemma, and letΓ1, Γ2 be two paths
connecting them, and FΓ1 and FΓ2 their fringes, all as in the previous lemma. Then the state at〈v,s〉 is
independent of which path was taken to reach it,

g(S(〈u, t〉),Γ1,FΓ1) = g(S(〈u, t〉),Γ2,FΓ2) . (41)
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Proof. Suppose otherwise. Then either the state we get by going alongΓ1 is wrong, i.e., isn’tS(〈v,s〉), or
the state we get by going alongΓ2 is wrong, or both are.

S(〈v,s〉) 6= g(S(〈u, t〉),Γ1,FΓ1) ∨ S(〈v,s〉) 6= g(S(〈u, t〉),Γ2,FΓ2) (42)

L+(〈v,s〉) 6 |= L−(〈v,s〉)|S(〈u, t〉),Γ1,FΓ1 ∨ L+(〈v,s〉) 6 |= L−(〈v,s〉)|S(〈u, t〉),Γ2,FΓ2 (43)

¬(L+(〈v,s〉) |= L−(〈v,s〉)|S(〈u, t〉),Γ1,FΓ1 ∧ L+(〈v,s〉) |= L−(〈v,s〉)|S(〈u, t〉),Γ2,FΓ2) (44)

But, by Lemma 5,L+(〈v,s〉) |= L−(〈v,s〉)|S(〈u, t〉),Γ1,FΓ1 andL+(〈v, t〉) |= L−(〈v,s〉)|S(〈u, t〉),Γ2,FΓ2. Hence
transitions must be path-independent. 2

4.2 Recursive Filtering
Because the causal states are logical constructions out of observational data, in principle the state at any
point can be determined exactly from looking at the point’s past light-cone. It may be, however, that
for some fields one needs to look infinitely far back into the past to fix the state, or at least further back
than the available data reaches. In such cases, one will generally have not exact knowledge of the state,
but either a set-valued type estimate (i.e.,S∈ S , for some set of statesS ), or a distribution over states,
supposing you have a meaningful prior distribution.

A naive state-estimation scheme, under these circumstances, would produce an estimate for each point
separately. The transition properties we have just proved, however, putdeterministicconstraints on which
states are allowed to co-exist at different points. In particular, we can narrow our estimates of the state at
each point by requiring that it be consistent with our estimates at neighboring points. Applied iteratively,
this will lead to the tightest estimates which we can extract from our data. If we can fix the state at even
one point exactly, then this will propagate to all points at that time or later.

More generally, rather than first doing a naive estimate and then tightening it, we can incorporate the
deterministic constraints directly into a recursive filter. Under quite general circumstances, as time goes
on, the probability that such a filter willnothave fixed the state of at least one point goes to zero, and once
it fixes on a state, it stays fixed. Such filters can be implemented, at least for discrete fields, by means of
finite-state transducers; see Shalizi (2001, Chapter 10) for examples (further specialized to discrete fields
on regular lattices).

4.3 Markov Properties
Recursive estimation is a kind of Markov property (Nevel’son and Has’minskiĭ, 1972/1976), and the fact
that it can work exactly here is very suggestive. So, too, is the fact that the past and the future light-cones
are independent, conditional on the causal state. It would be very nice if the causal states formed a Markov
random field; for one thing, we could then exploit the well-known machinery for such fields. For instance,
we would know, from the equivalence between Gibbs distributions and Markov fields (Guyon, 1995), that
there was an effective potential for the interactions between the states across the network.

Definition 4 (Parents of a Local Causal State)The parents of the local causal state at〈v, t〉 are the
causal states at all points which are one time-step before〈v, t〉 and inside its past light-cone:

A(〈v, t〉) ≡ {S(〈u, t−1〉) |(u = v)∨ (uEv)} (45)

Lemma 6 The local causal state at a point, S(〈v, t〉), is independent of the configuration in its past light
cone, given its parents.

S(〈v, t〉) |= L−(〈v, t〉)|A(〈v, t〉) (46)



26 Cosma Rohilla Shalizi

Proof. 〈v, t〉 is in the intersection of the future light cones of all the node in the patch att −1. Hence,
by the arguments given in the proof of the composition theorem, it is affected by the local states of all
those nodes,and by no others. In particular, previous values of the configuration inL−(〈v, t〉) have no
direct effect; any influence must go through those nodes. Hence, by d-separation,S(〈v, t〉) is independent
of L−(〈v, t〉). 2

Theorem 5 (Temporal Markov Property) The local causal state at a point, S(〈v, t〉), is independent of
the local causal states of points in its past light cone, given its parents.

Proof. By the previous lemma,S(〈v, t〉) is conditionally independent ofL−(〈v, t〉) given its parents. But
the local causal states in its past light cone are a function ofL−(〈v, t〉). Hence by Equation 16,S(〈v, t〉) is
also independent of those local states. 2

Comforting though that is, we would really like a stronger Markov property, namely the following.

Conjecture 1 (Markov Field Property) The local causal states form a Markov field in space-time.

Argument for why this is plausible.We’ve seen that, temporally speaking, a Markov property holds: given
a patch of nodes at one time, they are independent of their past light cone, given their causal parents. What
we need to add for the Markov field property is that, if we condition onpresentneighbors of the patch, as
well as the parents of the patch, then we get independence of the states of all points at timet or earlier.
It’s plausible that the simultaneous neighbors are informative, since they are also causal descendants of
causal parents of the patch. But if we consider any more remote node at timet, its last common causal
ancestor with any node in the patch must have been before the immediate parents of the patch, and the
effects of any such local causal state are screened off by the parents.

Unfortunately, this is not really rigorous. In the somewhat specialized case of discrete fields on regular
lattices, a number of systems have been checked, and in all cases the states have turned out to be Markov
random fields.

5 State Reconstruction for Discrete Fields
The local causal states are a particular kind of hidden-state model; they combine optimal prediction prop-
erties (Section 3) with the nice structural properties of hidden-state models (Section 4). It is only human
to be tempted to use them on actual systems. In the special case of discrete-valued fields, one can reliably
identify the causal states from empirical data, with minimal assumptions. This section describes an algo-
rithm for doing so, building on earlier procedures for cellular automata (Shalizi and Shalizi, 2003). As
always, I take structure of the network to be known and constant.

Assume that for each point we have estimates of the conditional probability distribution P(L+,L−)
over light-cones for each point. (These could come, for instance, from the empirical distribution in an
ensemble of networks with the same structure, or from the same network observed over time, if certain
ergodicity assumptions can be made.) The resulting conditional distributions, P(L+|l−), can be treated as
multinomials. We then cluster past configurations, point by point, based on the similarity of their condi-
tional distributions. We cannot expect that the estimated distributions will match exactly, so we employ
a standard test, e.g.χ2, to see whether the discrepancy between estimated distributions is significant.
These clusters are then the estimated local causal states. We consider each cluster to have a conditional
distribution of its own, equal to the weighted mean of the distributions of the pasts it contains.
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U← list of all pasts in random order
Move the first past inU to a new state
for eachpast in U

noMatch ← TRUE
state ← first state on the list of states
while (noMatch and more states to check)

noMatch ← (Significant difference betweenpast andstate ?)
if (noMatch )

state ← next state on the list
else

Movepast from U to state
noMatch ← FALSE

if (noMatch )
make a new state and movepast into it from U

Fig. 6: Algorithm for grouping past light-cones into estimated states

As a practical matter, we need to impose a limit on how far back into the past, or forward into the future,
the light-cones are allowed to extend — their depth. Also, clustering cannot be done on the basis of a true
equivalence relation. Instead, we list the past configurations

{
l−i
}

in some arbitrary order. We then create
a cluster which contains the first past,l−1 . For each later past, sayl−i , we go down the list of existing
clusters and check whether Pt(L+|l−i ) differs significantly from each cluster’s distribution. If there is no
difference, we addl−i to the first matching cluster and update the latter’s distribution. Ifl−i does not match
any existing cluster, we make a new cluster forl−i . (See Figure 6 for pseudo-code.) As we give this
procedure more and more data, it converges in probability on the correct set of causal states, independent
of the order in which we list past light-cones (see below). For finite data, the order of presentation matters,
but we finesse this by randomizing the order.

Suppose that the past and the future light-cones are sufficiently deep that they suffice to distinguish the
causal states, i.e., that if we had the exact distribution over light-cones, the true causal states would coin-
cide exactly with those obtained from the distribution over limited-depth light-cones. Then, conditioning
on the limited-depth past cones makes futures independent of the more remote past. Indeed, every time
we examine the future of a given past, we take anindependentsample from an unchanging distribution
over futures. Thus, the strong law of large numbers tells us that the empirical probability of any future
configuration will converge on the true probability almost surely. Since, with finite future depth, there
are only finitely many possible future configurations, the conditional distribution as a whole also con-
verges almost surely. And, if there are only finitely many vertices, we get over-all convergence of all the
necessary conditional distributions.

For this analysis to hold, we need to know three things.

1. The structure of the graph.

2. The constantc which is the maximum speed at which information can propagate.

3. The minimum necessary depth of past and future cones.
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Note that if we over-estimate (2) and (3), we will not really harm ourselves, but under-estimatesare
harmful, since in general they will miss useful bits of predictive information.

Note that this analysis, like the algorithm, is somewhat crude, in that it doesn’t make use of any of
the properties of the causal states we established earlier. In the analogous case of time series, using those
properties can greatly speed up the reconstruction process, and allows us to not merely prove convergence,
but to estimate the rate of convergence (Shaliziet al., 2002). Probably something like that could be done
here, with the additional complication that each vertex must get its own set of states.

6 Conclusion
The purpose of this paper has been to define, mathematically, optimal nonlinear predictors for a class of
complex systems, namely dynamic random fields on fixed, undirected graphs. Starting with the basic idea
of maximizing the predictive information, we constructed thelocal causal statesof the field, which are
minimal sufficient statistics, and so the simplest possible basis for optimal prediction. We then examined
how to combine these states for non-local prediction, and the structure of the causal-state field. The last
section described an algorithm for reconstructing the states of discrete fields.
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