Skip to Main content Skip to Navigation
Conference papers

On-line Adaptive Chain Covering of Upgrowing Posets

Bartłomiej Bosek 1 Piotr Micek 1
1 Algorithmics Research Group
UJ - Jagiellonian University [Krakow]
Abstract : We analyze on-line chain partitioning problem and its variants as a two-person game. One person (Spoiler) builds an on-line poset presenting one point at time. The other one (Algorithm) assigns new point to a chain. Kierstead gave a strategy for Algorithm showing that width w posets can be on-line chain partitioned into $\frac{{5}^{w-1}}{4}$ chains. Felsner proved that if Spoiler presents an upgrowing poset, i.e., each new point is maximal at the moment of its arrival then there is a strategy for Algorithm using at most $\binom{w+1}{2}$ chains and it is best possible. An adaptive variant of this problem allows Algorithm to assign to the new point a set of chains and than to remove some of them (but not all) while covering next points. Felsner stated a hypothesis that in on-line adaptive chain covering of upgrowing posets Algorithm may use smaller number of chains than in non-adaptive version. In this paper we provide an argument suggesting that it is true. We present a class of upgrowing posets in which Spoiler has a strategy forcing Algorithm to use at least $\binom{w+1}{2}$ chains (in non-adaptive version) and Algorithm has a strategy using at most $O(w\sqrt{w})$ chains in adaptive version.
Complete list of metadata

Cited literature [3 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam <>
Submitted on : Tuesday, August 11, 2015 - 2:00:33 PM
Last modification on : Wednesday, May 10, 2017 - 5:40:19 PM
Long-term archiving on: : Thursday, November 12, 2015 - 10:12:48 AM


Publisher files allowed on an open archive


  • HAL Id : hal-01183337, version 1



Bartłomiej Bosek, Piotr Micek. On-line Adaptive Chain Covering of Upgrowing Posets. Computational Logic and Applications, CLA '05, 2005, Chambéry, France. pp.37-48. ⟨hal-01183337⟩



Record views


Files downloads