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ABSTRACT

This paper evaluates the robustness of different approaches
for speech recognition with respect to signal-to-noise ratio
(SNR), to signal level and to presence of non-speech data
before and after utterances to be recognized. Three types
of noise robust features are considered: Power Normalized
Cepstral Coefficients (PNCC), Mel-Frequency Cepstral Coef-
ficients (MFCC) after applying an extended spectral subtrac-
tion method, and Sphinx embedded denoising features from
recent sphinx versions. Although removing CO in MFCC-
based features leads to a slight decrease in speech recognition
performance, it makes the speech recognition system inde-
pendent on the speech signal level. With multi-condition
training, the three sets of noise-robust features lead to a rather
similar behavior of performance with respect to SNR and
presence of non-speech data. Overall, best performance is
achieved with the extended spectral subtraction approach.
Also, the performance of the PNCC features appears to be
dependent on the initialization of the normalization factor.

Index Terms— Speech recognition, Speech level robust-
ness, Noise robustness, Spectral subtraction, PNCC.

1. INTRODUCTION

Speech recognition in noisy environment is one of the most
studied topics over the last years. Indeed, if clean speech
recognition systems are regularly improved, one of the
biggest difficulty is the robustness of such systems in real
conditions. Real conditions often involve background noise,
short sentences and non-speech data (silence or noise) before
and after the actual utterance to be recognized. Additionally,
the input speech signal can also vary a lot in term of level due
to the speech production level and to the distance between the
user and the microphone.

All these “’perturbations” degrade the speech recognition
performance. The most problematic perturbation is certainly
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the background noise which has drawn a lot of attention from
researchers since many years (see [1] for areview). Two kinds
of approaches are especially developed to improve speech
recognition performance in noisy environment. The first one
consists to enhance the speech signal before recognizing it.
This corresponds to a filtering procedure which aims to re-
move as much as possible the background noise [2]. The
second one consists in using features, mainly inspired by hu-
man auditory processing, which are more robust to the noise
than the conventional Mel-Frequency Cepstral Coefficients
(MFCC) [1].

Spectral subtraction [3] is a well known noise reduction
technique. This technique aims at removing the background
noise (i.e., an additive noise) by subtracting an estimation of
the noise spectrum from the noisy speech spectrum. Most
of the time, a Voice Activity Detector (VAD) is needed to
detect non-speech regions in order to update the estimation
of the noise spectrum. Noise robust features are inspired by
human auditory processing as for example Perceptual Lin-
ear Predictive (PLP) [4], Relative Spectral Transform-PLP
(RASTA-PLP) [5] and Power Normalized Cepstral Coeffi-
cients PNCC [6]. They include some psychoacoustic effects
such as temporal masking effect, and different filter bank dis-
tributions and filter shapes to better match the human audition
process. In this paper we are particular interested on the re-
cent PNCC features since they correspond to an emerging and
certainly promising approach.

The previous mentioned methods (speech enhancement
and robust features) are all efficient to improve speech recog-
nition performance in noisy conditions compared to standard
MFCC front end. However, their performance can be affected
by the input signal level. In this paper, a solution based on
the removal of the Cj coefficient which is related to the en-
ergy, is evaluated. The impact of removing the Cj coefficient
on speech recognition performance in presence of non-speech
data (i.e., silence or noise segments) is also analyzed.

In this paper, the objective is to evaluate and compare the
performance of a few sets of noise robust features, namely
PNCC, extended spectral subtraction and Sphinx embedded
denoising methods. For performance evaluations, speech
data utterances are extracted from French broadcast record-



ing. These segments are then altered in different ways to
simulate operational conditions: by adding non-speech, by
adding longer non-speech segments to the actual speech seg-
ments (i.e. resulting in non-speech regions before and after
speech segments), and by attenuating the input signal level
(i.e., the signal amplitude).

The paper is organized as follows. Section 2 details the
three selected approaches. Section 3 describes the recognition
models as well as the training and test data. Section 4 focuses
on the results and Section 5 concludes the paper.

2. SPEECH ENHANCEMENT AND NOISE ROBUST
FEATURES

Three single channel approaches are considered in this study:
the PNCC features, the extended spectral subtraction method
and the embedded Sphinx denoising method.

2.1. Power normalized cepstral coefficients (PNCC)

PNCC features were proposed by Kim and Stern [6] and
are based on human auditory processing. PNCC differ from
MEFCC in several aspects. First, the traditional logarithmic
nonlinearity used in MFCC computation is replaced by a
power-law nonlinearity. A similar nonlinear function was
used for computing RASTA-PLP coefficients, however for
PNCC the power value is set to 1/15 according to psychoa-
coustic observations. Secondly, the triangular filter bank is
replaced by a gammatone filter bank. PNCC computation
also includes a noise suppression algorithm based on asym-
metric filtering including temporal masking effects. Since
PNCC computation does not use a logarithmic nonlinearity,
all the features may strongly be influenced by the signal level.
In order to reduce this phenomenon, the PNCC algorithm
includes a power normalization procedure which consists in
scaling the power of each frame according to a normalization
factor estimated on-line using the power of past frames.

2.2. Extended spectral subtraction

The extended spectral subtraction method was proposed by
Sovka et al. [7]. The main advantage of this approach is
the combination of a Wiener filter and a spectral subtraction
method. Furthermore, there is no need for a VAD since the al-
gorithm estimates the noise pattern during speech sequences.
The approach consists in using a Wiener filter to estimate the
spectral noise pattern which is then subtracted from the in-
put noisy speech spectrum. The noise spectrum is estimated
on-line based on the difference between the changing rate of
noise and of speech (i.e., the speech signal is assumed to
change faster than the background noise). The particular-
ity of this method is the updating of the Wiener filter using
its output instead of the input, as it is usually done when a
Wiener filter is used (see [7] for more details). In addition to

the spectral subtraction, corrections are added through a half-
wave rectifier, in order to reduce spectral error, and a noise
overestimation factor (see [8] for more details).

2.3. Sphinx embedded denoising features

Recent versions of the Sphinx toolkit include a denoising al-
gorithm largely inspired from the PNCC approach. Indeed,
the main difference between the Sphinx implementation and
the original PNCC implementation is that, in the Sphinx ver-
sion, the filter bank is the triangular one traditionally used in
MFCC estimation. Furthermore, in the Sphinx version the
logarithm function is still used after noise removal instead
of the power-law used in PNCC. Thus in the Sphinx version
there is no need to apply power normalization as in PNCC.
In other words, the Sphinx version uses the asymmetric noise
suppression procedure of the PNCC algorithm but the pre-
processing and the post-processing correspond to that of the
MFCC computation.

3. EXPERIMENTAL SETUP

This section describes the data used to train the speech recog-
nition models and the noise data collected in a noisy envi-
ronment. Then, details about the acoustic analyses and the
acoustic models are given.

3.1. Speech corpora

The speech corpora used in our experiments come from the
ESTER?2 [9] and the ETAPE [10] evaluation campaigns, and
the EPAC [11] project. The ESTER2 and EPAC data are
French broadcast news collected from various radio channels,
thus they contain prepared speech, plus interviews. A large
part of the speech data is of studio quality, and some parts are
of telephone quality. On the opposite, the ETAPE data corre-
spond to debates collected from various radio and TV chan-
nels. Thus this is mainly spontaneous speech. The speech
data of the ESTER?2 and ETAPE train sets, as well as the tran-
scribed data from EPAC corpus, were used to train the acous-
tic models. The training data amounts to almost 300 hours of
signal and almost 4 million running words. The test data cor-
responds to a single broadcast recording from the ESTER2
corpus (not used in the training step) which has been cut in
small segments (n = 246) of various length according to the
transcription file. The length of the segments (or utterances)
varies from 0,7 second to 16 seconds.

3.2. Noise data

The noise used in our experiments was recorded in a shop near
a cash register. Thus, the noise is a mixture of background
music, background speech and cash register beeps. A three
hour recording was cut into two parts: one part is used in the
training step and the other part is used in the decoding step. To



generate noisy data, for each speech segment, a noise segment
is randomly extracted and added to the speech signal.

Because cash register beeps, but also some impacts on
the recording material, induce strong peaks in the signal, the
noise signal was pre-processed to flatten the amplitude en-
velop. This was done by equalizing the intensity frame by
frame to a reference value before reconstructing the signal.
For this processing, frames of 20 ms duration, with 50% over-
lap, are used.

3.3. Acoustic analysis

Features extraction for both training and decoding were com-
puted as follow:

o MFCC with C features are extracted using Sphinx3 tools
[12] !. Extraction is performed using 40 filters, 25.6 ms
frame length, 100 frames per second and 39 coefficients
(13 static from Cy to C12 + 13 A + 13 AA). These fea-
tures are used for the baseline model.

o MFCC without Cy (here after denoted noCy) features are
similar to the previous ones, except that the coefficient Cy
is removed. Thus, only 38 coefficients are retained. This
set of 38 features features is used for the baseline model
without Cp, for Extended spectral subtraction approach
and for the sphinx embedded denoising approach.

e PNCC features are extracted using the free C library? de-
veloped by Principi et al. [13]. The analysis frame length,
the number of frames per second and the number of coef-
ficients are the same as for the MFCC analysis. They are
used for evaluating the PNCC approach.

3.4. Modelizations

The Sphinx3 tools [12] are used to train the context depen-
dent phone acoustic models and to decode audio signals. The
acoustic HMM are modeled with 64-Gaussian components
per mixture. Five models are trained using the database de-
scribed in section 3.1. Two of them are the baseline models
and are trained using MFCC without any pre-pocessing, with
and without the Cy coefficient, using clean speech corpora.
These two models aim to analyze the influence of the Cy pa-
rameter. To evaluate the 3 noise robust approaches, 3 multi-
condition models are trained, one for each approach. The
SNR considered for the multi-condition training are: SNR =
{Inf; 20 dB; 15 dB; 10 dB; 5 dB}. Noisy data are obtained
by adding randomly selected noise segments to each speech
segment of the training set. Before being added, the noise sig-
nal is scaled according to the required SNR value. Details of
these five models are given below.

e Baseline: single-condition training, clean speech, MFCC
with Cy.

'The version used in this article is the Sphinx3 R-12729,
http://sourceforge.net/p/cmusphinx/code/12729/tree/trunk/
2url: http://a3lab.dibet.univpm.it/projects/libpncc
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Fig. 1. Waveforms of (a) a clean speech signal utterance with silence
segments of length A7 = 2.0 sec. before and after, (b) a noise signal
(randomly extracted from the noise data) and (c) the sum of (a) and
(b) which provides the noisy segment (here SNR = 10 dB)

e Baseline_noCy: single-condition training, clean speech,
MFCC without CY.

o Extended_SS_multi_noCy: multi-condition training, noisy
speech denoised using the extended spectral subtraction
method, MFCC without Cj.

o SphinxDenoise_multi noCy:  multi-condition training,
noisy speech denoised using Sphinx embedded method,
MFCC without Cj.

o PNCC_multi:
PNCC features.

multi-condition training, noisy speech,

3.5. Tests data

Three kinds of test sets are generated based on short seg-
ments: (1) level attenuated utterances, (2) noisy utterances,
(3) enlarged noisy segments (i.e., with non-speech regions be-
fore and after the actual utterances).

1. Level attenuated utterances are obtained by lowering the
signal level. Four levels of amplitude attenuation are used:
Att. = {0 dB; -12 dB; -24 dB; -36 dB}. Note that these
attenuations correspond to dividing the signal sample val-
ues by 1, 4, 16, and 64 respectively.

2. Noisy data are generated by adding noise. For each utter-
ance the level of the noise signal is set in order to obtain
4 levels of signal-to-noise ratio: SNR = {Inf; 20 dB; 15
dB; 10 dB}. Note that SNR=Inf corresponds to the clean
speech.

3. To evaluate the influence of non-speech segments before
and after utterances, silence is added at the beginning and
at the end of each utterance. The duration of these seg-
ments are the following : Ar ={0s; 0.5s; 1.0s; 2.0
s; 4.0 s}. Note that A7 = 1.0 s means that one second
is added over the whole segment. After that, the noise is
added according to three SNR levels : SNR = {20 dB; 15
dB; 10 dB}. An example is given in Figure 1.



Models \ Att. 0dB -12dB -24dB -36dB Models \ SNR Inf 20dB 15dB 10dB
Baseline 31.53 31.06 5561 94.67 Baseline 31.53 3126 36.87 55.00
Baseline_noCy 3274 32777 3322 3347 Baseline_noCy 32.74 30.65 3568 51.07
Extended_SS_multi_noCq 30.79 31.00 30.81 30.11 Extended_SS_multi_noCq 30.79 29.80 30.09 34.04
SphinxDenoise_multi_noCo  32.55 31.73 3253  32.56 SphinxDenoise_multi_noCo  32.55 31.58 33.08 36.73
PNCC_multi 3329 4292  93.60 9494 PNCC_mutli 3329 3347 3546 39.46
PNCC_multi+Adapted_ 11> 33.29  33.53 3314  32.61

Table 1. WER (%) according to the attenuation of the input
signal (Att.).

4. RESULTS

After evaluating the impact of the Cy coefficient, this section
analyzes the performance of the sets of noise robust features.

4.1. Input level robustness

The impact of the input signal level on speech recognition
performance is analyzed using clean speech data (SNR = Inf)
and various attenuation values (Att = {0 dB; -12 dB; -24 dB;
-36 dB}), but without adding non-speech segments (Ar = 0
S).

Table 1 gives the Word Error Rate (WER) for the vari-
ous sets of features according to the attenuation level. It is
clear that the Baseline model (i.e., with Cy) is very sensitive
to this attenuation and the performance strongly degrades for
large attenuation values (i.e., -24 dB and -36 dB). However,
removing the C coefficient (i.e., Baseline_noCy) gives very
good results, even for large attenuation values (i.e., -36 dB),
and the performance just slightly decreases. This justifies our
motivation to remove the Cy coefficient in all sets of MFCC-
based features in order to improve the robustness with respect
to signal level. Evaluations done with the other MFCC-based
features used in this paper give similar results when the Cj
coefficient is removed.

Concerning the noise robust feature sets, because two of
them are based on MFCC without Cy, their performance are
comparable and are not sensitive to the input level (see Table
1). But, for the model trained using PNCC, features the WER
strongly increases even with a low attenuation value such as
-12 dB. This point is discussed in section 4.4.

4.2. Noise robustness

Table 2 shows the WER results according to SNR. Concern-
ing baseline features, a slight degradation can be observed for
the baseline model without Cy, compared to the model in-
cluding Cy, for clean speech. However, some improvements
are observed for lower SNR values when the Cj coefficient
is removed. Note that results obtained for SNR = 20 dB is
2% abolute better that results for clean speech (i.e. SNR =

3¢f. Section 4.4

Table 2. WER (%) according to the Signal-to-Noise ratio (A7 =
0.0 s).

Models \ SNR Inf 20dB 15dB 10dB
Baseline - 31.03 37.07 5523
Baseline_noCop - 3134 3579 51.67
Extended_SS_multi_noCy - 33.03 33.64 37.78
SphinxDenoise_multi_noCo - 33.88 34.50 39.67
PNCC_multi - 3476 3643 41.74

Table 3. WER (%) according to the Signal-to-Noise ratio (Ar =
4.0s).

Inf). This can be explained by the higher SNR mean value of
the training data compare to the data used for the evaluation.
Thus, adding some noise before decoding leads to a better
matching between the testing and the training set.
Concerning the noise robust feature sets a clear improve-
ment of results according to SNR is observed compared to
the baseline model. Between clean and 10 dB SNR, the WER
only increases by approximatively 5 % absolute. The model
based on the extended spectral subtraction gives better results
than the PNCC or the embedded Sphinx denoise features.

4.3. Robustness with respect to non-speech segments

Previous results show the usefulness of removing the Cy co-
efficient for increasing robustness to the input level variation.
However, this modification may affect the detection and the
recognition of speech surrounded by non-speech segments,
especially when no VAD is used. To evaluate this aspect, var-
ious SNR and non-speech segment durations are used (as de-
scribed in section 3.5).

Table 3 gives the results for non-speech segments of 4 sec-
ond duration (A7 = 4.0 s). The main result is the slight in-
fluence of non-speech region before or after an utterance for
baseline features without Cjy (compared to the results with
Ar =0.0 s, cf. Table 2, column 2). Concerning the noise
robust feature sets, the extended spectral subtraction provides
the best performance.

Figure 2 displays results for different values of A7 and for
a SNR = 15 dB. Here again, for all non-speech segment du-
rations, the extended spectral subtraction features lead to the
best results. For all feature sets, a slight performance degra-
dation is observed when the duration of the non-speech seg-
ments increases.
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Fig. 2. WER of PNCC_multi, SphinxDenoise_multi_noCo and Ex-
tended_SS_multi_noCy models for various A7 and for SNR = 15 dB.

4.4. PNCC vs. input signal level

Table 1 shows a large performance degradation of the PNCC
features when the input signal is attenuated. This is due to
the processing of rather shorts speech segments. Decoding
short segments prevent the PNCC algorithm to converge to
the average power in order to apply a proper power normal-
ization. The initial power parameters (denote as g in [6])
was initialized to the value returned by the PNCC analysis
of the whole signal file from which the segments were ex-
tracted. This gives good results for the original modified seg-
ments (Att. = 0 dB). But, when the speech signal is attenu-
ated, the initial power value do no match properly. In order to
estimate the influence of the initial power parameter on per-
formance robustness with respect to the signal level, the initial
power parameter (1) was adjusted according to each attenu-
ation level.

The results of this experiment are presented in Table 1 in
the line denoted PNCC_multi+Adapted_pig. Even if perfor-
mance is not the best one, adjusting the initial power param-
eter jo of the PNCC algorithm gives much better results than
the PNCC without such adjustment. We could even expect
better results with an improved adjustement of y to each ut-
terance.

Other experiments (not reported here) have shown that
at low SNR values, when PNCC features are computed on
long duration speech signals, these features provide the best
recognition performance. However, the reported experiments
show that the setting of this initial power parameter has a crit-
ical importance on the speech recognition performance when
dealing with rather short speech segments (i.e., the size of an
utterance).

5. CONCLUSION

This paper has evaluated the robustness of different ap-
proaches for speech recognition with respect to perturba-
tions that are frequent in real operating conditions. The
experiments showed that removing the Cj coefficient, in
MFCC-based features, does not impact a lot on the speech
recognition performance in clean speech condition nor when
non-speech segments are present before or after the actual
utterance to recognize, and this makes the speech recognition

system much more robust with respect to the input speech
signal level. Results also show that the extended spectral sub-
traction approach, including corrections, gives the best results
which are slightly better than the sphinx embedded denoising
approach, and slightly better than the baseline, even in clean
speech conditions. Results also show that PNCC features
are a promising set of noise robust features, but they are
strongly dependent on the initialization of the initial power
parameter, especially when applied on rather short duration
speech segments. Future work will investigate solutions for
a better initialization of this parameter, to make the PNCC
approach suitable for real time speech recognition, even on
short duration speech segments.
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