Osculating Random Walks on Cylinders

Abstract : We consider random paths on a square lattice which take a left or a right turn at every vertex. The possible turns are taken with equal probability, except at a vertex which has been visited before. In such case the vertex is left via the unused edge. When the initial edge is reached the path is considered completed. We also consider families of such paths which together cover every edge of the lattice once and visit every vertex twice. Because these paths may touch but not intersect each other and themselves, we call them osculating walks. The ensemble of such families is also known as the dense $O(n=1)$ model. We consider in particular such paths in a cylindrical geometry, with the cylindrical axis parallel with one of the lattice directions. We formulate a conjecture for the probability that a face of the lattice is surrounded by m distinct osculating paths. For even system sizes we give a conjecture for the probability that a path winds round the cylinder. For odd system sizes we conjecture the probability that a point is visited by a path spanning the infinite length of the cylinder. Finally we conjecture an expression for the asymptotics of a binomial determinant
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.259-264, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183915
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:05:59
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:36:40

Fichier

dmAC0122.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01183915, version 1

Collections

Citation

Saibal Mitra, Bernard Nienhuis. Osculating Random Walks on Cylinders. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.259-264, 2003, DMTCS Proceedings. 〈hal-01183915〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

197