The volume and time comparison principle and transition probability estimates for random walks

Abstract : This paper presents necessary and sufficient conditions for on- and off-diagonal transition probability estimates for random walks on weighted graphs. On the integer lattice and on may fractal type graphs both the volume of a ball and the mean exit time from a ball are independent of the center, uniform in space. Here the upper estimate is given without such restriction and two-sided estimate is given if the mean exit time is independent of the center but the volume is not.
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.301-308, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183929
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:07:19
Dernière modification le : jeudi 11 mai 2017 - 01:03:07
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:37:33

Fichier

dmAC0128.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01183929, version 1

Collections

Citation

András Telcs. The volume and time comparison principle and transition probability estimates for random walks. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.301-308, 2003, DMTCS Proceedings. 〈hal-01183929〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

45