Random Infinite Permutations and the Cyclic Time Random Walk

Abstract : The random stirring process is a natural random walk on the set of permutations of the vertex set of a graph. The cyclic time random walk is a self interacting random walk on a graph. It is influenced by its past, in that it is constrained to repeat its past choices if it returns to a previously visited edge after a multiple of some period of time. The two models are fundamentally equivalent to each other as well as to a certain coalescence and fragmentation process.
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.9-16, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183937
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:08:08
Dernière modification le : jeudi 11 mai 2017 - 01:03:08
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:38:04

Fichier

dmAC0101.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01183937, version 1

Collections

Citation

Omer Angel. Random Infinite Permutations and the Cyclic Time Random Walk. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.9-16, 2003, DMTCS Proceedings. 〈hal-01183937〉

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

123