The number of distinct part sizes of some multiplicity in compositions of an Integer. A probabilistic Analysis

Abstract : Random compositions of integers are used as theoretical models for many applications. The degree of distinctness of a composition is a natural and important parameter. A possible measure of distinctness is the number $X$ of distinct parts (or components). This parameter has been analyzed in several papers. In this article we consider a variant of the distinctness: the number $X(m)$ of distinct parts of multiplicity m that we call the $m$-distinctness. A firstmotivation is a question asked by Wilf for random compositions: what is the asymptotic value of the probability that a randomly chosen part size in a random composition of an integer $ν$ has multiplicity $m$. This is related to $\mathbb{E}(X(m))$, which has been analyzed by Hitczenko, Rousseau and Savage. Here, we investigate, from a probabilistic point of view, the first full part, the maximum part size and the distribution of $X(m)$. We obtain asymptotically, as $ν → ∞$, the moments and an expression for a continuous distribution $φ$ , the (discrete) distribution of $X(m,ν )$ being computable from $φ$ .
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.155-170, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183943
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:08:34
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:38:23

Fichier

dmAC0115.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01183943, version 1

Collections

Citation

Guy Louchard. The number of distinct part sizes of some multiplicity in compositions of an Integer. A probabilistic Analysis. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.155-170, 2003, DMTCS Proceedings. 〈hal-01183943〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

140