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Random compositions of integers are used as theoretical models for many applications. The degree of distinctness of
a composition is a natural and important parameter. A possible measure of distinctness is the number X of distinct
parts (or components). This parameter has been analyzed in several papers. In this article we consider a variant of the
distinctness: the number X

�
m � of distinct parts of multiplicity m that we call the m-distinctness. A first motivation is

a question asked by Wilf for random compositions: what is the asymptotic value of the probability that a randomly
chosen part size in a random composition of an integer ν has multiplicity m. This is related to � � X � m ��� , which has
been analyzed by Hitczenko, Rousseau and Savage. Here, we investigate, from a probabilistic point of view, the first
full part, the maximum part size and the distribution of X

�
m � . We obtain asymptotically, as ν � ∞, the moments and

an expression for a continuous distribution ϕ, the (discrete) distribution of X
�
m � ν � being computable from ϕ.

Keywords: Mellin transforms, urns models, Poissonization, saddle point method, generating functions

1 Introduction
Let us first recall some well-known results. Let us consider the composition of an integer ν, i.e. ν �
∑N

i xi � xi : integer � 0. Considering all compositions as equiprobable, we know (see [HL01]) that the
number of parts N is asymptotically Gaussian, ν 	 ∞:

N 
 N
� ν

2 � ν4 � � (1)

and that the part sizes are asymptotically id GEOM  1 � 2 � and independent. Consider now n random
variables (R.V.), GEOM  1 � 2 � and define the indicator R.V.†

Yi : ��� � value i appears among these n R.V. � �
Then, asymptotically, n 	 ∞, the Yi are independent. The first empty part value, i.e the first k such that
Yk � 0, is of order O  logn � . Here and in the sequel, log : � log2 � L : � ln2. Similarly, the maximum part

† Here we use the indicator function notation proposed by Knuth et al. [GKP89].
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size is also of order O  logn � , as well as the number Y of distinct values (part sizes): Y � ∑∞
1 Yi. The

asymptotic distributions and moments of these R.V. are also given in [HL01]. We know (see Hwang and
Yeh [HY97]) that �  Y � 
 logn � γ � L � 1 � 2 � β  logn ��� O  1 � n �
where β is a small periodic function of logn, and the distribution of Y is highly concentrated around its
mean, with a O  1 � range. All these distributions depend on logn. Hence, with (1), the same R.V. related
to ν are asymptotically equivalent by replacing logn by logν � 1 (see [HL01]).

In this article we consider a variant of the distinctness: the number X  m � of distinct parts of multiplicity
m that we call the m-distinctness. A first motivation is a question asked by Wilf for random compositions:
what is the asymptotic value of the probability P  m � ν � that a randomly chosen part size in a random
composition of an integer ν has multiplicity m. (The corresponding problem for random partitions has
been analyzed in Corteel et al. [CPSW99]). Of course, here,

P  m � ν � � �  X  m � ν � � Y  ν � � �
where we explicitly show the dependence on ν. But, as already mentioned, Y  ν � has asymptotically the
same distribution as Y (with logn replaced by logν � 1). On the other side, Y is highly concentrated
around its mean . Hence, asymptotically, as shown in Hitczenko, Savage [HS99] and Hitczenko et al
[HRS02], for m � O  1 � ,

P  m � v � 
 �  X  m � ν � � � �  Y  ν � ���
Here, we investigate, from a probabilistic point of view, the first full part, the maximum part size and
the distribution of X  m � ν � . We obtain asymptotically, as ν 	 ∞, the moments and an expression for a
continuous distribution ϕ, the (discrete) distribution of X  m � ν � being computable from ϕ. We will see
that, again, all asymptotic distributions for some multiplicity m depend only on logn. Hence, the same
R.V. related to ν are again simply obtained by replacing logn by logν � 1. The paper is organized as
follows: in Section 2, we consider a fixed multiplicity m � O  1 � . We analyze the moments, the first full
part, the maximum part size, and the distribution of X  m � . Section 3 is devoted to large multiplicity m.
Section 4 concludes the paper. Due to length constraints, some proofs have been briefly presented.

In this section, we are interested in the properties of the R.V.:
Xi  m � : � � � value i appears among the n GEOM  1 � 2 � R.V. with multiplicity m � for fixed m � O  1 ��� ���
Of course,

Pr � Xi  m � � 1 � � �
n
m �  1 � 2i � m  1 � 1 � 2i � n 	 m � (2)

We immediately see that the dominant range is given by i � logn � O  1 � . To the left and the right of
this range, Pr � Xi  m � � 1 � 
 0. Within the range, Pr � Xi  m � � 1 � is asymptotically equivalent to a Poisson
distribution:

Pr � Xi  m � � 1 � 
 1
m!
 n � 2i � m exp 
� n � 2i � �

and, with X  m � : � ∑∞
1 Xi  m � , �  X  m � � 
 G  n � m � �

where, using the ”sum splitting technique ” as described in Knuth [Knu73], p.131,

G  n � m � : � 1
m!

∞

∑
i � 1
 n � 2i � m exp �� n � 2i � �
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which, for large n, can be analyzed using Mellin transforms: see Flajolet et al. [FGD95]. It is well known
that the dominant value is given by some constant. The oscillatory part has a very small amplitude, usually
of order 10 	 5. Indeed, set f  y � : � yme 	 y. We obtain

G  n � m � � 1
m!

∞

∑
i � 1

f  n � 2i � �
the Mellin transform of which is

G �  s � � Γ  m � s �
m!

2s

1 � 2s �
defined in the fundamental strip � � m � 0 � . To the right of this strip, the poles of G�  s � are a simple pole
at s � 0, and simple poles at s � χk : � 2kπi � L  k �� 0 � . The singular expansion of G �  s � is given by ‡

G �  s ��� �
Γ  m �
Lm!s � � ∑

k �� 0

Γ  m � χk �
Lm!  s � χk � �

This leads, by converse mapping, to

G  n � m � 
 1
mL

� β0  logn ��� O  1 � n � � (3)

where β0 is a small periodic function of logn:

β0  log2 n � : � ∑
k �� 0

Γ  m � χk �
Lm!

n 	 χk � ∑
k �� 0

Γ  m � χk �
Lm!

e 	 2πik logn �
In the sequel, β �  logn � will always denote (small) periodic functions. As n 
 N  ν

2 � ν
4 � , we just have to

replace logn by logν � 1. So we recover the mean already computed in Hitczenko and Savage, [HS99]
and Hitczenko , Rousseau and Savage, [HRS02]. To compute all moments, we must check that the Xi

are asymptotically independent. We could proceed as was done in [HL01] for the Yi, but we follow here
another route. Let us consider Πn � �  zX � . We obtain

Theorem 1.1.

Πn 
 ∞

∏
l � 1

� �
1 � 1

m!
 n � 2l � me 	 n � 2l � � z

1
m!
 n � 2l � me 	 n � 2l � � n 	 ∞ �

Proof. We use an urn model, as in Sevastyanov and Chistyakov, [SČ64] and Chistyakov, [Chi67], and
the Poissonization method (see, for instance Jacquet and Szpankowski [JS98] for a general survey). If we
Poissonize, with parameter τ , the number of balls (i.e the number n of R.V. here), the generating function
of Xl is given from (2), by �

1 � 1
m!
 τ � 2l � me 	 τ � 2l � � z

1
m!
 τ � 2l � me 	 τ � 2l �

‡ The symbol 	 is used to denote the fact that two functions are of the same asymptotic order.
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and we have independency of cells occupation. This leads to

e 	 τ ∑
n

τn

n!
Πn � ∞

∏
l � 1

� �
1 � 1

m!
 τ � 2l � me 	 τ � 2l � � z

1
m!
 τ � 2l � me 	 τ � 2l � �

Hence, by Cauchy, we obtain Πn � n!
2πi � Γ

exp � n f  τ ��� dτ � τ � where Γ is inside the analyticity domain of

the integrand and encircles the origin, and

f  τ � : � � logτ � τ � n � 1
n

∞

∑
l � 1

ln

� �
1 � 1

m!
 τ � 2l � me 	 τ � 2l � � z

1
m!
 τ � 2l � me 	 τ � 2l � �

By standard saddle-point method (see, for instance, Flajolet and Sedgewick, [FS94]), we look for τ � such
that f �  τ � � � 0, with

f �  τ � � � 1 � τ � 1 � n � z � 1
nτ

∞

∑
l � 1

 τ � 2l � m � 1 � m  τ � 2l � m
m!exp  τ � 2l � �  τ � 2l � m � z  τ � 2l � m �

But, again by Mellin, for fixed z � 0,

∞

∑
l � 1

 τ � 2l � m � 1 � m  τ � 2l � m
m!exp  τ � 2l � �  τ � 2l � m � z  τ � 2l � m 
 C � β �  logτ � �

with

C : � � ∞

0

ym � 1 � mym

m!exp  y � � ym � zym dy � L �
Hence τ � 
 n � C. It is easily checked that C � 0. Finally, Πn 
 n!en f � τ �	�


2πτ ��� n f � �  τ � � � and, by Stirling, we

easily derive the theorem.

Theorem 1.1 confirms the asymptotic independence assumption.

1.1 The moments of X  m �
We now have all necessary ingredients to compute the moments. The variance of X  m � is now easily
derived: we obtain, by Mellin,

VAR  X  m � � 
 1
m!

∞

∑
1
 n � 2i � m exp �� n � 2i � � 1 � 1

m!
 n � 2i � m exp �� n � 2i � �


 � ∞

0
e 	 y ym

m!
 1 � e 	 y ym

m!
� dy
Ly

� β1  log2 n �
� 1

mL
�  2m � 1 � !

Lm!222m � β1  log2 n ���
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The other moments can be derived as follows. We obtain, setting z � es,

ln  Πn � 
 S2 � ∞

∑
l � 1

ln

�
1 �  es � 1 � 1

m!
 n � 2l � m exp 
� n � 2l � �

� ∞

∑
i � 1


� 1 � i � 1  es � 1 � iVi

i � with

Vi : � ∞

∑
l � 1

�
1

m!
 n � 2l � m � i

exp 
� in � 2l ���
The centered moments of X  m � can be obtained by analyzing

S3 : � exp � S2 � sV1 � �
Again, by Mellin, we obtain

Vi 
 Bi � βi  logn � �
with

Bi � � ∞

0

�
ym

m! � i

e 	 iy dy
Ly
�  im � 1 � !

m!iLiim �
and finally, the centered moments are given by

σ̃2 : � VAR  X  m � � 
 1
mL

�  2m � !
2Lm!222mm �

µ̃3 : � µ3  X  m � � 
 1
mL

� 3  2m � !
2Lm!222mm

� 2  3m � !
3Lm!333mm �

µ̃4 : � µ4  X  m � � 
 1
mL

� 3
m2L2 � 3  4m � !

2Lm!444mm
� 4  3m � !

Lm!333mm� 7  2m � !
2Lm!222mm

� 3  2m � !
3L2m!222mm2 � 3  2m � !2

4L2m!424mm2 �
The neglected terms are made of periodic functions β �  logn � and of O  1

n � contributions.
Again, the centered moments (of order � 2) of X related to a composition of ν are given by the same

expressions.
For n � 20000 � m � 2, we have done a simulation (of T � 4000 sets). We obtain the results of Table 1

(the probability related moments are explained later on). For an easy comparison, we give here only four
significant digits.

1.2 The maximum part size of multiplicity m

The maximum part size Mn  m � of multiplicity m is such that

Pr  Mn  m � � k � 
 ∞

∏
i � k

�
1 � 1

m!
 n � 2i � m exp �� n � 2i � � �
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Theoretical Observed value Probability
asymptotic value related value

mean .7213 . . . .7345. . . .7214. . .

variance .5861 . . . .5945. . . .5863. . .

µ3 .3750. . . .3752 . . . .3752. . .

µ4 1.1197. . . 1.1341. . . 1.1198. . .

Tab. 1: Moments, n � 20000 � m � 2 .

Set η : � Lk � lnn. This leads, with η � O  1 � , to

Pr  Mn  m � � k � 
 ϕ1  m � η � �
with

ϕ1  m � η � � ∞

∏
j � 0

�
1 � 1

m!
e 	 m � η � L j � e 	 e

��� η � L j � � �
Figure 1 gives ϕ1  m � η � for m � 1 � � ��� � 4, bottom to top. It appears that for η 	 � ∞ � ϕ1  m � η � seems to
converge to some value, which of course corresponds to

P  m � 0 � : � Pr  X  m � � 0 � �
but a closer view reveals the usual fluctuations, shown in Figure 2, for m � 2. Set ψ  n � : � logn ��

logn � (fractional part). With η � L 
� 6 � ψ  20000 � � , we obtain P  2 � 0 � � � 4489079864 ����� , which will
be compared later on with a direct expression.

Similarly, we derive

Pr  Mn  m � � k � 1 � 
 ϕ2  m � η � � ϕ1  m � η � e 	 m � η 	 L � e 	 e
��� η � L � � m! �

Figure 3 gives ϕ2  m � η � for m � 1 � ��� � � 4, (more and more concentrated as m increases).
Our simulation for n � 20000 � m � 2 of T � 4000 sets leads to Figure 4 (ϕ1, observed = circle, asymp-

totic = line) and Figure 5 (ϕ2, observed = circle, asymptotic = line). Again, for compositions, we replace
logn by logν � 1.

1.3 First full part value of multiplicity m
Another variable of interest is the first k such that Xk � 1, i.e we are interested in the probability

Pr � Xi � 0 � i � 1 �	�
� k � 1 � Xk � 1 ���
Note that this is the opposite situation of the Yk case (see [HL01]), where we looked for the first k such
that Yk � 0. The probability is asymptotically given by

k 	 1

∏
i � 1

�
1 � 1

m!
 n � 2i � m exp �� n � 2i � � 1

m!
 n � 2k � m exp 
� n � 2k ���
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Again, we set η : � Lk � lnn. This leads asymptotically, with η � O  1 � to

Pr � Xi � 0 � i � 1 �
�	� k � 1 � Xk � 1 � 
 ϕ3  m � η � �
with

ϕ3  m � η � � ϕ4  m � η � 1
m!

e 	 mηe 	 e
� η �

ϕ4  m � η � � ∞

∏
j � 1

�
1 � 1

m!
e 	 m � η 	 L j � e 	 e

��� η � L j � � �
Again, for compositions, we replace logn by logν � 1. Figure 6 gives ϕ4  2 � η � and Figure 7 gives ϕ4  2 � η �
for large values of η. Again, this is oscillating and corresponds to P  2 � 0 � .
1.4 Asymptotic distribution of X  m �
The analysis is rather similar to the one we used in [Lou87] and [HL01]. First of all we have, for any fixed
k � O  logn � ,

P  m � 0 � 
 ϕ4  η � ϕ1  η � �
Let us choose k � �

logn � . This leads to η � � Lψ  n � and we obtain a periodic function of ψ:

P  m � 0 � 
 ϕ4 � � Lψ  n ��� ϕ1 � � Lψ  n ��� �
shown in Figure 10 for m � 2. For n � 20000 � m � 2, the numerical value of P  2 � 0 � is exactly the same
as before. Now we turn to P  m � j � : � Pr  X  m � � j � . We take advantage of the fact that all urns are empty
before the first occupied urn, k � 1 say. Then, again with η : � Lk � lnn,

P  m � 1 � 
 ∑
k

ϕ3  η � L � ϕ1  η � �
P  m � 2 � 
 ∑

k

ϕ3  η � L � ϕ1  η � ∑
r1 � k

�
1

m!
 n � 2r1 � m exp 
� n � 2r1 ��� �

1 � 1
m!
 n � 2r1 � m exp 
� n � 2r1 � ��� �

and more generally,

P  m � u � 1 � 
 ∑
k

ϕ3  η � L � ϕ1  η ���
� ∑ � � r1 � r2 � � � � ru � r j � k � � u

∏
i � 1

�
1

m!
 n � 2ri � m exp 
� n � 2ri ��� �

1 � 1
m!
 n � 2ri � m exp 
� n � 2ri � ���

Now we set ri � k � wi � l � k � �
logn � and we finally derive the following theorem

Theorem 1.2. Set ψ  n � : � logn � �
logn � , then

P  m � u � 1 � 
 ∞

∑
l � 	 ∞

ϕ5 � L  l � ψ  n � ��� �
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with

ϕ5  η � � ϕ3  η � L � ϕ1  η ���� ∑ � �w1 � w2 � � ��� � wu � w j � 0 � � u

∏
i � 1

�
1

m!
e 	 m � η � Lwi � e 	 e

��� η � Lwi � � �
1 � 1

m!
e 	 m � η � Lwi � e 	 e

��� η � Lwi � ���
Note that, for compositions, we obtain asymptotically ψ  n � � ψ  ν � . We get again periodic function of

ψ  n � . We give in Figure 11 and Figure 12 the sums
∑3

i � 0 P  2 � i � � ∑4
i � 0 P  2 � i � . The effect of computing P  2 � i � with bounded indices (we limit the values of wu

to 16) becomes apparent at the 10 	 7 precision.
Figure 13 gives P  m � i � � m � 1 � ����� � 4, (from top to bottom to the right of i � 2). The distributions become

more concentrated as m increases.
Finally, we compare the observed distribution of X  2 � with the asymptotic one in Figure 14 (observed =

circle, asymptotic = line). Apart from i � 0 the fit is quite good. The ”Probability related values” moments
given in Table 1 are computed with the distribution P  2 � i � .
2 Large multiplicity m
2.1 Fixed number of parts n
It is now clear that large m are related to small integer values i. More precisely, the number Mi of integers
equal to i is asymptotically given by a Gaussian:

Pr  Mi � m � 
 exp � �  m � n � 2i � 2 � � 2n � 2i  1 � 1 � 2i � � � ��� 2πn � 2i  1 � 1 � 2i ��� (4)

The means n � 2i � i � 1 � 2 � � ��� are given by n � 2 � n � 4 � � ��� , separated by n � 4 � n � 8 � � ��� which shows that the
Gaussians (4) are asymptotically exponentially distinct in the sense that some common intervals, for
instance m � � 3n � 2i � 2 � n � 2i � 3 � � 3n � 2i � 2 � n � 2i � 3 � have asymptotically small probability measures. So
for any large value m , only one value

i � round � log  n � m � � (5)

is related to m and X  m � has only two possible values: � 0 � 1 � . The following events are equivalent:� � Xi  m � � 1 � ��� � �Mi � m � � . The probability (4) is small, of order at most O  1 � 
 m � . Figure 15 gives
Pr  Xi  m � � 1 � for n � 2000 (first three ranges, i � 1 � 2 � 3) and Figure 16 gives the corresponding distribu-
tion functions, together with the observed values provided by a simulation of T � 2000 sets (observed =
circle, asymptotic = line).

An interesting check would be to recover the dominant term of the mean of Y :
�  Y � 
 logn. Choose

j̃ : � α logn � 0 � α � 1 which corresponds, by (5), to m̃ � n1 	 α. For each i � j̃, by Euler–McLaurin,�
3n � 2i � 1 �

∑
m � � 3n � 2i � 2 � exp � �  m � n � 2i � 2 � � 2n � 2i  1 � 1 � 2i ���	� ��� 2πn � 2i  1 � 1 � 2i � 
 1 �

and this contributes to
�  Y � by S1 � j̃. On the other side, each m

�
m̃ contributes, by (3), with 1

mL , with a
total contribution

S2 � 1
L

m̃

∑
1

1 � m 
 1
L

lnm̃ �
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The quantity S1 � S2 
 logn as expected.

2.2 Composition of ν.

Now the number of parts N is such that (see(1))

N 
 N
� ν

2 � ν4 � �
We obtain �  Mk � � ν

2
1
2k � (6)

The asymptotic distribution of Mk is obtained as follows. We derive, setting M̃k : �  Mk � n � 2k � � 
 ν,���
exp � iMkθ � 
 ν ��� � ���

exp � inθ �  
 ν2k ��� iM̃kθ ���

 � �

exp � inθ �  
 ν2k � � θ2n �  2ν2k �  1 � 1 � 2k � � �

 exp

�
iνθ �  2 
 ν2k � � νθ2 �  2ν2 � 2k �  1 � 1 � 2k � � ν � 8 � iθ �  
 ν2k � � θ2 �  2ν2k �  1 � 1 � 2k ��� 2 �


 exp
�
iθ



ν �  2 � 2k � � θ2 � 2 � 1 �  4 � 4k ��� 1 �  2 � 2k �  1 � 1 � 2k � � � � ν 	 ∞ �

The first term confirms (6). The second term shows that

Mk 
 N
�

ν
2

1
2k � νσ2

m � �
with

σ2
m � 1 �  4 � 4k ��� 1 �  2 � 2k �  1 � 1 � 2k ���

The conclusions of Sec. 2.2 are still valid.

3 Conclusion

Using various techniques from analysis and probability theory, we have analyzed the stochastic properties
of the m-distinctness of random compositions. An interesting open problem would be be to extend our
results to the Carlitz compositions, where two successive parts are different (see [LP02]).
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