Some remarks concerning harmonic functions on homogeneous graphs

Abstract : We obtain a new result concerning harmonic functions on infinite Cayley graphs $X$: either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of $X$. In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. Certain relations to group cohomology are also discussed.
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.137-144, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183944
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:08:41
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:38:19

Fichier

dmAC0113.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01183944, version 1

Collections

Citation

Anders Karlsson. Some remarks concerning harmonic functions on homogeneous graphs. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.137-144, 2003, DMTCS Proceedings. 〈hal-01183944〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

38