The number of distinct values of some multiplicity in sequences of geometrically distributed random variables

Abstract : We consider a sequence of $n$ geometric random variables and interpret the outcome as an urn model. For a given parameter $m$, we treat several parameters like what is the largest urn containing at least (or exactly) $m$ balls, or how many urns contain at least $m$ balls, etc. Many of these questions have their origin in some computer science problems. Identifying the underlying distributions as (variations of) the extreme value distribution, we are able to derive asymptotic equivalents for all (centered or uncentered) moments in a fairly automatic way.
Type de document :
Communication dans un congrès
Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.231-256, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184030
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 15:51:44
Dernière modification le : mercredi 10 mai 2017 - 17:39:17
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:40:09

Fichier

dmAD0122.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184030, version 1

Collections

Citation

Guy Louchard, Helmut Prodinger, Mark Daniel Ward. The number of distinct values of some multiplicity in sequences of geometrically distributed random variables. Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.231-256, 2005, DMTCS Proceedings. 〈hal-01184030〉

Partager

Métriques

Consultations de la notice

128

Téléchargements de fichiers

70