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Renewed interest in caching techniques stems from their application to improving the performance of the World Wide Web, where
storing popular documents in proxy caches closer to end-users can significantly reduce the document download latency and overall
network congestion. Rules used to update the collection of frequently accessed documents inside a cache are referred to as cache
replacement algorithms. Due to many different factors that influence the Web performance, the most desirable attributes of a cache
replacement scheme are low complexity and high adaptability to variability in Web access patterns. These properties are primarily
the reason why most of the practical Web caching algorithms are based on the easily implemented Least-Recently-Used (LRU)
cache replacement heuristic.

In our recent paper Jelenk@and Radovanoti(2004c), we introduce a new algorithm, termed Persistent Access Caching (PAC),

that, in addition to desirable low complexity and adaptability, somewhat surprisingly achieves nearly optimal performance for
the independent reference model and generalized Zipf's law request probabilities. Two drawbacks of the PAC algorithm are its
dependence on the request arrival times and variable storage requirements. In this paper, we resolve these problems by introducing
a discrete version of the PAC policy (DPAC) that, after a cache miss, places the requested document in the cache only if it is
requested at leadt times among the lask, m > k, requests. However, from a mathematical perspective, due to the inherent
coupling of the replacement decisions for different documents, the DPAC algorithm is considerably harder to analyze than the
original PAC policy. In this regard, we develop a new analytical technique for estimating the performance of the DPAC rule. Using
our analysis, we show that this algorithm is close to optimal even for small valuesofim, and, therefore, adds negligible
additional storage and processing complexity in comparison to the ordinary LRU policy.

Keywords: persistent-access-caching, least-recently-used caching, least-frequently-used caching, move-to-front searching, gener-
alized Zipf's law distributions, heavy-tailed distributions, Web caching, cache fault probability, average-case analysis

1 Introduction

Since the recent invention of the World Wide Web, there has been an explosive growth in distributed multimedia con-
tent and services that are now an integral part of modern communication networks (e.g., the Internet). This massively
distributed network information is repeatedly used by groups of users implying that bringing some of the more pop-
ular items closer to end-users can improve the network performance, e.g., reduce the download latency and network
congestion. This type of information replication and redistribution system is often termed Web caching.

One of the key components of engineering efficient Web caching systems is designing document placement (replace-
ment) algorithms that are selecting and possibly dynamically updating a collection of frequently accessed documents.
The design of these algorithms has to be done with special care since the latency and network congestion may actu-
ally increase if documents with low access frequency are cached. Thus, the main objective is to achieve high cache
hit ratios, while maintaining ease of implementation and scalability. Furthermore, these algorithms need to be self-
organizing and robust since the document access patterns exhibit a high degree of spatial as well as time fluctuations.
The well-known heuristic named the Least-Recently-Used (LRU) cache replacement rule satisfies all of the previously
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mentioned attributes and, therefore, represents a basis for designing many practical replacement algorithms. However,
as shown in Jelenkowi(1999) in the context of the stationary independent reference model with generalized Zipf's
law requests, this rule is by a constant factor away from the optimal frequency algorithm that keeps most frequently
used documents in the cache, i.e., replaces Least-Frequently-Used (LFU) items. On the other hand, the drawbacks of
the LFU algorithm are its need to know (measure) the document access frequencies and employ aging schemes based
on reference counters in order to cope with evolving access patterns, which result in high complexity. In the context
of database disk buffering, O’'Neil et al. (1999) proposes a modification of the LRU policy, called LRU-K, that uses
the information of the last K reference times for each document in order to make replacement decisions. It is shown
in O'Neil et al. (1999) that the fault probability of the LRU-K policy approaches, as K increases, the performance

of the optimal LFU scheme. However, practical implementation of the LRU-K policy would still be of the same or-

der of complexity as the LFU rule. Furthermore, for larger value&'otthat might be required for nearly optimal
performance, the adaptability of this algorithm to changes in traffic patterns will be significantly reduced.

In our recent paper Jelenka@vand Radovano@i(2004c), we designed a new cache replacement policy, termed
the Persistent Access Caching (PAC) rule, that is essentially preserving all the desirable features of LRU caching,
while achieving arbitrarily close performance to the optimal LFU algorithm. Furthermore, the PAC algorithm has only
negligible additional complexity in comparison with the widely used LRU policy. However, the drawback of the PAC
policy is that its implementation and analysis depend on the Poisson assumption on the request arrival times. In this
paper, we propose a discrete version of the PAC rule (DPAC), that, upon a miss for a document, stores the requested
document in the cache only if there are at Idaséquests for it amongn, m > k, previously requested documents;
therefore, DPAC does not depend on request arrival times. Furthermore, the DPAC policy requires only a fixed amount
of additional storage fam pointers and a small processing overhead that make it easier to implement than the original
PAC rule. On the other hand, due to the coupling of the request decisions, as pointed out in the abstract, DPAC is
significantly more difficult to analyze. To this end, we develop a new analytic technique, which, in conjunction with
the large deviation analysis and asymptotic results developed in JelérdayiRadovanoti(2004c,a); Jelenkogi
(1999), shows that the performance of the DPAC policy is nearly optimal. It is surprising that even for small values of
k, m, the performance ratio between the DPAC and optimal LFU algorithm significantly improves when compared to
the ordinary LRU; for example, this ratio drops from approximate§8 for LRU (k = 1) to 1.18, 1.08 for k = 2,

3, respectively. In other words, with only negligible computational complexity relative to the LRU rule, the DPAC
algorithm approaches the performance of the optimal LFU scheme without ever having to compute the document
access frequencies. Furthermore, we show that our asymptotic formulas and simulation experiments match each other
very well, even for relatively small cache sizes.

This paper is organized as follows. First, in Section 2, we formally describe the DPAC policy and develop a
representation theorem for the stationary cache fault probability. This representation formula and lemmas of Section 3
provide necessary tools for proving our main result, stated in Theorem 1, in Section 4. Informally, this theorem shows
that for large cache sizes, independent reference model and generalized Zipf’s law request distributions Withe
fault probability of the DPAC algorithm approaches the optimal LFU policy while maintaining low implementation
complexity. Furthermore, in Section 5, we provide an additional validation of our asymptotic approximations with
simulation experiments. A brief discussion of our results is presented in Section 6. In order to alleviate the reading
process, we present the proof of a technical lemma in Section 7.

2 Model description and preliminary results

Consider a seL. = {1,2,...,N} of N < oo documents (items) of unit size, out of whiehdocuments can be
stored in an easily accessible location, called cache. The remainge items are placed outside of the cache in
a slower access medium. Documents are requested at mofaghts.1, with increments{7,,41 — 7, }n>0, 70 = 0,
being stationary and ergodic havifig; = 1/ for some\ > 0, andr; > 0 a.s.. Furthermore, define i.i.d. random
variablesRY), {Rﬁ,,N)}nZl, independent fror{7,, }.,>1, Where{R%N) = i} represents a request for itenat time
.. We denote the request probabilitieSqéjg) £ P[RW) = ] and, unless explicitly required for clarity, we omit the
superscriptV and simply writeR, R, ¢;; also, without loss of generality, we assume that ¢2 > .. ..
Now, we describe the cache replacement algorithm. First, we select fixed design parametérs> 1. Then, let
M;(r,,) be the number of requests for itenamong them consecutive requests,, 7,11, - - -, Th+m—1. DOCuments
stored in the cache are ordered in a list, which is sequentially searched upon a request for a document and is updated
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as follows. If a requested document at timg saysi, is found in the cache, we have a cache hit. In this case, if

the number of requests for documeéramong the lastn requests (including the current request) is at léaste.,
M;i(Th—m+1) > k, itemi is moved to the front of the list while documents that were in front of iteane shifted

one position down; otherwise, the list stays unchanged. Furthermore, if documernt found in the cache, we call

it a cache miss or fault. Then, similarly as beforeM§(7,,—+1) > k, document is brought to the first position

of the cache list and the least recently moved item, i.e., the one at the last position of the list, is evicted from the
cache. We name the previously described cache replacement policy the Discrete Persistent Access Caching (DPAC
(m, k)) algorithm. Note that in the special caserof> k = 1, DPAC reduces to the ordinary LRU heuristic. Also,

the earlier proposeditin-a-row” rule (Kan and Ross (1980); Gonnet et al. (1981)), that was studied in the context of
the expected list search cost, is a special case of the DRAG(algorithm whenm = k. The performance measure

of interest is the cache fault probability, i.e., the probability that a requested document is not found in the cache. We
would like to mention that the probabilistic evaluation of an algorithm is typically referred to as the average-case
analysis; the pointers to the literature on combinatorial (competitive, worst case) approach can be found in 8elenkovi
and Radovanoti(2004c).

Analyzing the DPACf», k) algorithm is equivalent to investigating the corresponding Move-To-Front (MTF) scheme
that is defined as follows. Consider the same arrival médgl}, {7,,} as in the first paragraph and assume that all
documents are ordered in alit= {1,2,..., N}, N < co. When a request for a document arrives, 8ay= i, the
list is searched and the requested item is moved to the front of the list only Whien _,,,.1) > k; otherwise the list
stays unchanged. We term the previously described searching algorithm the Discrete Persistent-MTF (DR TF(

The performance measure of interest for this algorithm is the searckﬂf%%tthat represents the position in the list
of the document requested at time

Now, we claim that computing the cache fault probability of the DRACK) algorithm is equivalent to evaluat-
ing the tail of the search cogt" of the DPMTF(n, k) searching scheme. Note that the fault probability of the
DPAC(m, k) algorithm stays the same regardless of the ordering of documents in the slower access medium. In par-
ticular, these documents can be also ordered in an increasing order of the last times they are moved to the front of
the cache list. Therefore, it is clear that the fault probability of the DPAG{) policy for the cache of size after
the nth request is the same as the probability that the search cost of the DRMAéIgorithm is greater tham,
ie., P[CfLN) > z|. Hence, even though DPA@GY( k) and DPMTF{n, k) belong to different application areas, their
performance analysis is essentially equivalent. Thus, in the rest of the paper we investigate the tail of the stationary
search cost distribution.

First, we prove the convergence of the search Gééft) to stationarity. Suppose that the system starts attjme 0
with initial conditions given by an arbitrary initial permutatidh, of the list and a sequence of the preceding- 1
requestsRo = {r—m42, "—m42, -, 7—1,70}-

In order to prove the convergence(deN ) to stationarity, we construct a sequence of DPMTF searching schemes
that start at negative time points and are observed attyme 0. To that end, le{R_,, },,>¢ be a sequence of i.i.d.
requests, equal in distribution #, that arrive at point§r_,, },,>0, 7—,, < 0. These arrival points are constructed such
that sequencér, 1 — 7} —co<n<oo IS Stationary and ergodic; in particular, for every> 1, {_Tk};;n is equal in
distribution to{r }_,. Then, for eacl > 0, we construct a DPMTH#%, k) algorithm starting at_,, with the same
initial condition as in the previous paragraph, givenlhyandRR,, and having a sequence of reque{s&i}?:_nﬂ;

note that in this construction we assume that there is no request atli,mEetC(fZ) be the search cost attimg =0
for the DPMTFn, k) algorithm starting at—_,,.
Now, if we consider the shift mapping,,_» — R_x, Tn_x — 7 for k =0,1,...n — 1, we conclude that, since

the corresponding sequences are equal in distribution, the searchéﬁ%tandC,(lN) are also equal in distribution,
ie., C,(LN> 4 C(ﬁl). Thus, instead of computing the tail of the search Cd)fé\f), we continue with evaluating the tail

of C(_])/L). In this regard, we define a sequence of random ti{ﬂés‘")}fvzl, n>1, where—Ti(_”) represents the last
time beforet = 0 that item: was moved to the front of the list under the DPM#%E ) algorithm that started at_,,;

if item ¢ is not moved in(7_,,, 0), we setTi(_") = —7_n. Next, we define random timg4;}¥ | as
T2 —sup{7_, <0:R_,, =i, Mi(T_p_ms1) >k} Q)

From the definitions off; and 7™, we conclude that the equalif; = 7\ ™ a.s. holds on evenfT! ™ <
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—T—nt+m-1}, n > m — 1. Therefore, the complementary sets of events are the same{Tiex 7—m4+1} =
{Ti(in) > —Tontm—1}-
Then, given the previous observations, we bound the tail of the searc@@?sas

PICY) > 2, Ry =i 7™ < =7 pymo1] <PICY) > 2, Ry = i] < @)
PICY) > 2, Ry =i, T'™ < 7o nym1] + PICY) > 2 Ry = i, ™™ > —1_psm1].

Next, observe that on evefiRy = i, Ti(_") < —T—p+m—1},n > m — 1, the search coﬁ(_]i) is equal to the number

of different documents (including that are moved to the front of the list from the last time that itemas brought to
the first position. Thus, we derive

PICYY) >, Ry =i, T ™ <~ pima] =P [Ro =0, 1T " <TI0 < 1] > 2
i

=P | > UL <Ti < Tomya] > 7| 3
J#i
where the last equality follows from the independence assumptidmon},>o, { R—» }n>0 and the equalityl; =

T on{Ty < Toome1}ri > 1.
Hence, by the monotone convergence theorem,

N N
lim Y PCY) >, Ro =i, T < tnmir) = D P | D 1T <T}] > x| . 4)
T i=1 i#i
Furthermore, due to the stationarity and ergodicity of the arrival proggss 7, /n satisfies the strong law of large
numbers that, in conjunction with the a.s. finitenesg;0& oo, results in

lim P[T; > 7,] = 0.
Finally, equality of event$Ti(_") > —T_pntm-1} = {T; > Th—m+1}, independence of requests, the preceding limit
and the dominated convergence theorem imply

N N
lim Y P[Ro =i, T " > 7 pimor] = lim > qPIT; > Toomya] = 0.
=1

=1
The previous expression, in conjunction with (4) and (2), implies the following representation result:

Lemma 1 Foranyl < N < oo, arbitrary initial conditions(IIy, Ry) and anyz > 0, the search cos(ﬂr(LN) converges
in distribution toC™) asn — oo, where

N
PICN) > o] & Z%’P [Si(Ti) > =] )

1=1
andSi(t) £ Ej;éi 1[Tj < t].

Remark 1 (i) Note that the expression in (5) is independent from the selection of the arrival pfeggss.,. To see

this, assume two arrival procesdes },,>1 and{7,, },,>1 that are independent from reque$f®, },,>1 and satisfy the
stationarity, ergodicity and monotonicity conditions from the beginning of this section. Using (1), we define random
times{T;}Y,, {T/}¥,, that correspond to processes, },>1, {7 }»>1, respectively. Then, itis easy to observe that
1Ty < T;] = 1[T] < T]] a.s. foranyj # i, i.e., the sequences of random tir{&s }, {7} } are ordered in exactly

the same way. Thus, sincg(T;) is completely determined by the ordering of these random times, it is clear that the
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distributions of the corresponding search costs are exactly the same. (ii) Using the preceding observation we assume
in the rest of the paper, without loss of generality, that},,>1 is a Poisson sequence of points with rateThis
assumption will be helpful in Section 3 in decoupling the dependency among random{fii}és, . In the context

of the LRU policy with i.i.d. requests, the Poisson embedding technique was first used in Fill and Holst (1996) to
derive a representation for the fault probability, as stated in (5), with independent randonjZifhethe work in Fill

and Holst (1996) provides a probabilistic proof of an earlier result from Flajolet et al. (1992) that was obtained using
formal languages.

3 Preliminary results on Poisson processes

This section provides bounds on random tirfiesind the sun®;(¢), as defined in Lemma 1, that represent necessary
building blocks for the asymptotic analysis of the stationary search cost from Lemma 1. Furthermore, it is worth
noting that Lemmas 4 and 5 develop a new technique that allows the decoupling of the dependency among random
timesT; and, thus, enable us to estimate the s¥j1). Throughout this section we assume that= co.

Recall the definition ofl; from (1). In order to avoid dealing with negative indices and signs, we define here a
sequence of random times on the positive sequéngg,>; that are equal in distribution tfT;},>;. Thus, with a
small abuse of notation, we use the same nd@hfer the following random times

T; 2 inf{r, > 0: R, =i, M;(1,) > k}. (6)

Next, as proposed in the remark after Lemma 1, we assumég-thii~ is a Poisson process of rate 1. Then, let
{T,(f)}nzl be a sequence of requests for documier@iven the i.i.d. assumption of?,,},,>1 and its independence
from the arrival points{r,},>1, the Poisson decomposition theorem implies that proce{ss(é)s}nzl, i > 1, are
also Poisson with ratg; and mutually independent for different This observation will be used in the proofs of the
subsequent lemmas.

In order to ease the notation, throughout the paper weduse denote a sufficiently large positive constant &and
to denote a sufficiently small positive constant. The valued @indh are generally different in different places. For
example,H/2 = H, H?> = H, H + 1 = H, etc. Also, we use the following standard notation. For any two real
functionsa(t) andb(t) and fixedty € R U {oo} we will usea(t) ~ b(t) ast — to to denotdim; ¢, [a(t)/b(t)] = 1
Similarly, we say that(¢) = b(t) ast — to if liminf, ¢, a(t)/b(t) > 1; a(t) < b(t) has a complementary definition.

The following two lemmas compute upper and lower bounds on the tail of the distributibrfaf larges.

Lemma 2 For any0 < ¢ < 1, there existg, and a fixed constarit > 0, such that for all > i,
P[T; > t] < e~ (io1)(A=aft | po—heai ™t @)

Proof: Fork = 1 the bound trivially holds sinc&; = 7—1 ) and, thus, we assume that> 2.
First, we define a sequence of random tinf€s }. We set9, = 7'1( , and definex(j), j > 1, to be the indices of
pomts{r( )}J>1 in the original sequencgr,, },>1, i.e., 7-( R (), J = 1. Then, if the first point from the sequence

{TJ( )} after timer,,(1)4m—1 1S r}l , we define@, = T;l). Similarly, ©3 is defined to be the first point fror{rj@}
after timer,,;,)+m—1, €tc. Observe thato } is a renewal process with its increments, for 1, equal to

Oj41 — 9+ Z & 8)

where< denotes equality in d|str|but|on and;};>1 are independent, exponentially distributed random variables
with meanl that are independent er }n>1
Next, we define

Note that this definition of/; has identical form to the one f@E in (6) sinceR(0;) = i is implied by{©,} C {T;i)}.
Therefore, giveq{©;} C {7,}, itis clear that
T, <U. 9
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Similarly, we define
X" &inf{j > 1: M;(©;) > k}.

Since{R, } isi.i.d and independent dfr,, }, X' is independent of©, } ;1 with geometric distributio®[ X’ = j| =
(1—p)i~—1p,j > 1, wherepis equal to
p=PM;(r") > K].

Then, from the definition of/; and (8) we obtain

(mfl)(Xfl) (m—-1)X
Ui=0x = 7'X) + Z i s T(Z + Z & (10)
j=1

whereX is constructed such tha < X’ and it is independent c{fn(f)}, {&1.
Next, smcer( Yis a geometric sum of exponential random variables \Mthnd{rfl’)}nzl independent, it is well

known (see Theorem.3, p. 89 of Cinlar (1975)) that)(f) is also exponential with parametgay;. Similarly, Zle &
is exponential with parameter Now, from monotonicity ofg; and) ", ¢; = 1, it follows that for anye > 0, there
existsig, such that for alf > i, ¢; is small enough to ensure

p=PM;(r") > k] = mi:l (m;1>qﬁ(1—q¢)m‘1‘l > (7:_ 11>q’“ Hl—g)" " > (1—6)<7:__1>qu~

1
l=k—1
(11)
At this point, using the observations from the previous paragraph, (9) and (10), we obtain,:ftargé enough
(i > ig),

]P)[Ti > t] < P[Ul > t]
(m—1)

<P[rQ > (1—6)}“}» Z & > et

i (1—e €t
< P09 4 (1 — )P ;wm

e (R @ =™ | (g — 1) 12)

(m=1Y k(12 k=1
e (eIi)ar(1—e) t 4 ome et

IN

IN

this completes the proof. &

Lemma 3 For anye > 0, there existg, such that for alli > i
P[T; > t] > e~ (9 (RT0)alt, (13)

Proof: Since the bound is |mmed|ate fbr= 1, we assumé > 2.
First, we group the pomt@rn }n>1 into cycles using the following procedure. L®f = 71 ) and define a random
time
Hlf{.] > 2: M( n(l)+m(j—1) ) = O}a

wheren(1) is the index of the poin®, = ( ) in the original sequencér,, },,>1, i.e. 7-1( D= = Tp(1)- Then, the first

cycle is the interval of tim&; = [Tn(l)an(1)+mZ171]- Next, the first point ofproces{s-n } after timer, (1) 42, —1,

sayTl(i), we label a®, = TZ(” and, similarly as before, we define a random time

Zy = 1nf{] >2: Mi(Tn(2)+7rz(j—1)) = O}a



Near optimality of the discrete persistent access caching algorithm 207

wheren(2) is the index of the poin®, in the original sequencgr, },,>1, 1.€.,02 = 7,,(2). We continue this procedure
indefinitely.

Now, due to the i.i.d structure ¢fR,, } and its independence frofr, }, the sequence of random timgg; } is i.i.d.
with geometric distribution

P[Z; = j] = (P[M;(11) > 0))) 2P[M;(r1) = 0], j>2. (14)
Furthermore{©,} is a renewal process with renewal intervals equal toj for1,

mZ1—1
0j41—0; 7 + z & (15)
=1

where{¢;} is an i.i.d. sequence of exponential random variables with niethat is independent o:f(l), Z1. Note

that the sequencg®; };>1, {n(j)};>1 as well as the other auxiliary variables (e .§., X, p) are different from the

ones in the proof of Lemma 2. The same will apply for the proofs of the remaining lemmas in this section.
Next, we define sets, fgr> 1,

A; £ {w: 31, €Cj, R(1) =i, Mi(7,) > k};
note that events!; are independent sinddi(fn(j)m(zj_l)) = 0. Then, since the union of the arrival points in all

cyclesU,C; contains all requestsr!” },

T; = inf{r, : R(1,) =1, M;(7,) > k, 7, €Cj,5 > 1}
> L; £ inf{0;(w) :w e Aj,j>1}, (16)
where the inequality is implied by, > ©; for anyr, € C;,j > 1.

Now, we define
X' =inf{j >1:3n, € C;, R(m,) =1, M;(1,) > k}.

The independence of events implies thatX’ has a geometric distributidh X’ = j] = (1 — p)’~'p,j > 1 with p
satisfying ‘ ‘
p = PlA,] < PUM (") 2 kY U{M(" mZ1) 2 k+ 1},

wherel; (7, k) is defined as the number of references for documantong the requests occurringat 7,41, - - - , Thtk—1-
Furthermore, using the preceding definitions, we arrive at

d ()
Li = C"‘)X/ Z TX 5 (17)

whereX is selected to be independent{oﬁi)} andx £ X'’; the inequality is obtained by neglecting the sum in (15).
Furthermore, similarly as in the proof of Lemmaréé,) is an exponential random variable with distribution
]P[T)((i) > t] = e P, (18)
Thus, in order to complete the proof, we need an upper boupd lorthis respect, using the union bound, we upper
bound the success probabiljtyas
p < BU{My(n") = k} U{Mi(r{" ,mZ1) > k4 1)]
< PM;i(r,m —1) > k= 1]+ P[Zy > k + 1] + P[M;(r1, m(k + 1)) > k]
= P[M;(ri,m — 1) > k — 1] + P[M;(m1) > 1]* + P[M;(r1,m(k + 1)) > k], (29)

where in the last equality we used the geometric distributio&ofrom (14). Finally, (16), (17), (18), (19) and the
fact that uniformly for alll <1, <1; <m(k + 1) and any fixed > 0,

P[Mi(r1, 1) > bo] = i (l;)qf(l — )" < (1+¢) (2)#

S=l2
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for all i large enoughi(> i), yield the stated bound in this lemma. &

In the following lemmas, we develop an analytic technique that allows us to decouple the dependency of random
timesT; for i large and to compute necessary estimates used in the proof of Theorem 1 in Section 4. The following
lemmas use the asymptotic estimate from Lemma 2 of Jelenkd9B9) and the large deviation bound from Lemma 4
of Jelenkovit and Radovanoti(2004a); for reasons of completeness, we restate these lemmas in the Appendix.

Lemma 4 Let{T;};>1 be random variables defined in (6). Then, o~ ¢/i* asi — oo, @ > 1 and

g — (1 4 €)o¢k ak
B G [
we obtain ) )
> 1
P21T<19 :O<m°‘1) as x — oo.
Li=1 J
Proof: Note that for anyig > 1
P 1T < 0, < <P[21[Ti<ﬁm]<x]. (20)
Li=1 J 1=1ig
Let {T]@)}jzl be an ordered sequence of request times for documents), i.e., {T}%)}jzl = UiZiO{’ﬂ(Li)}nZL
We usen(j), j > 1, to denote the index of point(“) in the original sequencér,, },>1, i.€., T(i - To(j)- Then,
since procesér,, } is Poisson andR,, } isi.i.d. sequence independent{of, }, by the Poisson decomposmon theorem,
process{ff“l) = Tu(j) }j>1 is also Poisson with rate’, ., ¢;. Next, in order to estimate an upper bound for random

timesT;, i > ig, we proceed as follows.
(7o

First, we define a sequence of random tinjes }. We set®, = 7,1y = 7 ). then, if the first point from the
sequencgr, ;) } after timer,, (1), —1 IS 7,(j,), We defined, = 7,,;,. Similarly, ©3 is defined to be the first point
from {7,,;)} after timer,;,)4+mn—1, €tc. Note that, due to the renewal structurgof}, {©;} is a renewal process
whose increments, for > 1, satisfy

m—1

041 —0; 27" 4 Z &, 1)

Whereq-l(i‘)), {& }i>1 are independent exponential random variables 'v\fﬁ‘ﬁ having parametey_, -, ¢; and¢; having
parameteil. -
Next, for all: > i, define
U, £inf{0; : R(©;) =i, M;(0;) > k,j > 1}.

Similarly as in the proof of Lemma 2, the definition bf has identical form to the one fdf; in (6). The only
difference is tha{®,} C {r,} and, therefore,
T, < U;. (22)

Then, using (21), we have that
0; L7+l 4o, 2, (23)

Whereyél) =0,1<!{<m-1 and{u](.l)}jzl, 1 <1 < m — 1, are independent Poisson processes of rdtet

are also independent of the Poisson proc{e§7§)}j21 having ratezmO ¢;. Using this observation and the fact that
{R,} and{r,} are independent, we arrive at the following representation

i

(24)

I M3
_|_
™
]
S
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where X; is a geometric random variable independent fr{zvff)}jzl, 1<li<m-1 and{T]@) }i>1 with P[X,; =

j] = (1 = p;)?~tp;, where
- 1) ! m—1-—1
E ¢;(1 —q;) .
15k Z]>20 495 < l '

Then, again, due to the Poisson decomposition theorem, vari@tb/@%}izin are independent and exponentially
distributed WithT)((if) having parametep; Zizio q;. Similarly, for each fixed <1 <m —1, variables{ugz},;zio are
also independent and exponential \/\Mﬁ) having parametep;. (Note that for differenf the sequence@g}izio

can be mutually dependent and also potentially dependem@}@o.) Furthermore, observe that for aay> 0
andig large enough

qi 1 /m—1 qi 1 (m—1
146 =—"—g¢q < > >pi > (1—€) =g, ( > (25)
2z 4 k—1 2 jzio 4 k—1

Next, inequalities (22) and (24) imply, for any> ig ande > 0,

1T, < 9,) > 1 T()—i- (1 I}

m

1
21[(10)<176 Zl{m }

=1

and, therefore,

oo _I_;z log x| o m—1 |z log x| 9
. l T
PlE:l[Ti<§m]§x1§P S < (-] - S 1{V§(Z>m}§m

i=ig i=ig =1 i=ip

_I_wlogwj _
<Pl Y 1) < (1-ev,] < (1+¢/2)

1=10

|z log =] 9 e
i=ig

Now, usingg; ~ ¢/i* asi — oo, Lemma 6 of the Appendix and setting= | /=], we derive, ag — oo,
E| Y 1 <(1-ed.]| 221+ @7)
i=|vz]
Then, usingy; ~ ¢/i* asi — oo andl — e~* < z, we arrive at

oo o0

El Y i sa-onll= Y P <o
i=|xzlogx|+1 i=|xlogx|+1
© & ° ok
< Z 1— e Haitol®) < g Z —F
i=|zlogx|+1 i=|zlogx|+1
<H t = Hz =o(z) asx — oo.

(zlogz)(@k=1)  (logz)xk—1
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Thus, applying the preceding estimate and (27), we obtain

|z log x| _ 00 _
E Z 1[7';((?) <(1-ev,]| ~E Z 1[7)(3) <(1—-e)d]| Z2(l+¢€) asax — oo.
i=|vz] i=|vz]
The previous expression, in conjunction with Lemma 7 of the Appendix, implies that the first term of (26) satisfies, as
x — 00,
|zlog x| _ 1
Pl Y U <(-gi < (1+e/2)z =(m) (28)
i=|vz]

Next, it is left to estimate the second term of (26). To this end, by using the monotonicjtyspfassumption
gi ~ ¢/i® asi — oo, inequality (25), and replacing,, we obtain

|z log z] . _
9 —(1—5)qu, . (m_l>%ﬁm
E 1 (1) €V, < m 9 zlogz] k-1 Tix vz 9
E [in > g < zlogzxe
i= V3]

a—1 a—1
ha®ky 2 hae 2

=xlogre (1sn°F = glogre (oe)*F = o(x) as x — oo.

Finally, applying Lemma 7 of the Appendix, we derive

|z log x| W 9 e 1
P ZL:J 1|:VX1 >m:| >% :O(xa_1> as r — oo,

which, in conjunction with (20), (26) and (28), completes the proof of this lemma. &

Note that in the following lemma, with a small abuse of notation, we assign a different valyeftom the one in
Lemma 4.
Lemmab Let{T;};>1 be random variables defined in (6). Then, o~ ¢/i* asi — oo, @ > 1 and
_ Jjak(l _ 2€)ak
T (e (R )I - )k

we obtain

- 1
P [Z UT; < 9,] > x] =0 (mal) asx — oo.
i=1

Proof: The proof of this lemma uses the idea of cycles from the proof of Lemma 3 in order to lower bound the random
times{T;} with a sequence of independent random variables. Thus, since many of the arguments are repetitive, we
postpone this proof until Section 7. &

4 Near optimality of the DPAC algorithm

Consider the class of online caching algorithms that make their replacement decisions using only the knowledge of
the past requests and cache contents. Assume also that, at times of cache faults, the replacement decisions are only
optional, i.e., the algorithm may keep the cache content constant (static). Within this context and the independent
reference model, it is well known that the static LFU policy that stores the most popular documents in the cache is
optimal. For direct arguments that justify this intuitively apparent statement see the first paragraph of Subsection
4.1 in Jelenkovt and Radovanogi(2004b); this is also recently shown in Bahat and Makowski (2003) using the
formalism of Markov Decision Theory. Therefof®,R > z] is the fault probability of the optimal static policy and
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P[C > z]/P[R > x] is the average-case competitive ratio between the stationary fault probabilities of the DPAC and
the optimal static algorithm.

In the following theorem we show that, for the case of generalized Zipf's law request distributions withand
large caches, the competitive rali” > z|/P[R > x| approaches very rapidly ag: grows. The proof of the theorem
is based on preliminary results from Section 3 as well as the probabilistic and sample path arguments introduced in
Jelenkovt and Radovanoti(2004a,c) for the case of ordinary LRU and continuous time PAC algorithm, respectively.
The starting point of our analysis is the representation formula in (5) from Section 2. We assumVethat and
denoteC' = C(>),

Theorem 1 Assume thag; ~ ¢/i® asi — oo anda > 1. Then, asc — oo,

P[C > z] ~ Ki(a)P[R > z], (29)
where .
2 r(1-2)] e (142 1), @
Furthermore, functior; («) is monotonically increasing ir, for fixedk, with
limKy(a) =1, lim Ky(a) = Kj(c0) £ 1p <1> ek, (31)
all aloo k k

where~ is the Euler constant, i.ey, ~ 0.57721 ..., and monotonically decreasing in for fixeda, with

lim Ki(a) =1. (32)

k—oo
Remark 2 (i) The same asymptotic result holds for the case of the continuous time PAC policy that was recently
derived in Theorenm of Jelenkovt and Radovanoti (2004c). (ii) After computing the second limit in (31) for
k = 1,2,3, we notice a significant improvement in performance of the DPACK) algorithm when compared to
the LRU policy ¢ = 1). Observe that already fdr = 3, the DPAC policy performs approximately with&¥ of the
optimal static algorithmX5(oo) =~ 1.08), which shows the near optimality of the DPAC rule even for small values of
k.

Proof: The proofs of monotonicity of;.(«) and limits (31) and (32) can be found in Jelenkoand Radovanoti
(2004c).

Next, we prove the upper bound for the asymptotic relationship in (29). Define the sum of indicator functions
S(t) = > ;=1 1[T; < t]; note thatS(t) is a.s. non-decreasing ini.e., S(t) < S(9,) a.s. for allt < 9,, wherey, is
defined in Lemma 5. Then, after conditioningBrbeing larger or smaller thah,, the expression in (5) can be upper
bounded as

P[C > z] <P[S(¥,) > x| + iqﬂpm > 9],

i=1

where in the previous expression we appl}ed , ¢; = 1 andP[S(¢) > z] < 1. Then, applying Lemma 5, we obtain
that the tail of the search coStis upper bounded by

P[C>zx] <o < ) + iqu[Ti >49,] asx — oco. (33)

i=1

:L-a—l

Next, due to the Poisson decomposition theorem, times of requests for dodareRbisson of ratg and mutually
independent for different Therefore, since; > g;, for i < iy, Poisson process of ratg can be constructed by
superposition of Poisson processes with ratesndg; — ¢;,. Thus, it is easy to conclude that, for i,

P[T; > t] < P[T;, > t]. (34)
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Therefore, using Lemma 2, we obtain, fgriarge enough,

iQiP[TiZﬂx]SPT > U, Zq7+2qe @ (1-9*(i=1)0 +qu7 ~hedi "0
=1

1= m 1= m

2 I (2) 4 Iy(z) + Is(x). (35)

After using bound (7) and replacing,, it immediately follows that

Li(z) < e~ %o (1= 0 (170) | pehediy W= — < > as r — oo. (36)

xa—l
Now, by assumption of the theorem, for alarge enoughi(> iy, wherei, is possibly larger than in (35))
(I —e€)ec/i® < g < (14 €)c/i*. 37)

Furthermore, foii large enoughi(> ig) inequalityc/i® < (1 + €)c/u® holds for anyu € [i,¢ + 1] and, therefore,
using this bound, (37), the monotonicity of the exponential function and replagifigm Lemma 5, yields

° — '.’Eak
h(e) € (1+€) 3 e =

i=io

k 2ok

<1+ 6)2/ iefL(e)[F(lfﬁ)]fa Wk du, (38)
1

whereu(e) 2 (1 + ¢)~*+D(1 — ¢)#+2(1 — 2¢)@*. Next, applying the change of variable method for evaluating the
integral withz = ¢(¢e)[I'(1 — -L.)]~**z**u =%, we obtain that the integral in (38) is equal to

c 1 ol 1 a—1 (D (1=Fp)) ™ 11
¢ _Ir(1-= - “z by
e~ a—1) { < ozk:)} (Ue))=F ak /0 € ah ek s

which, in conjunction with (38), implies

B

fim sup IP’[I];(i)x] < Kp(a)(u(€)) 75 F (14 €)? — Ky(a) ase— 0, (39)

whereKy(«) is defined in (30).
In order to estimate the asymptoticsigfx), we use analogous steps as we applied in evaluding. Thus, using
inequalities from (37)¢/i* < (1 4 €)c/u® for u € [i,i + 1] and replacing’,., we obtain

e k

C _he—z" _
Iy(@) < m(1+e) Y soe” "D

L—m

o [T ¢ —he—zt
m(l+e€) / —e Tueth dy. (40)
1

ua

Now, if & = 1, it is straightforward to compute the integral in the preceding expression and dptain< m(1 +
€)%(c/(a = 1))e~he=™ = o(1/2*~1) asz — oo. Otherwise, fork > 2, after using the change of variable method for
solving the integral in (40) with = hex®*u~*(*=1) we obtain, as: — oo,

1 1 1 1 1
; < 3 ¢ _ _ B
fy(@) < m(l+¢) (he) P (=) a(k — 1) gtr(a—D r <k T 1)) ¢ (w—l) (41)

Therefore, (41), (39), (36), (35) and (33), yield,-as~» o,

PIC > 2] S Ki(o)P[R > z]. (42)
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For the lower bound o[C' > «], starting from (5), we derive

i=1 i=1

> aP[T; > 9,] - P[S(9,) <z —1],
i=ig
where we choosg,, as in Lemma 4. Next, we apply Lemma 4 to estimate the second term in the preceding expression.
Then, after applying Lemma 3 to lower bound the tail of random tif#€$,>,,, in conjunction with the analogous
reasoning as in estimating(x), we complete the proof of this theorem. &

In Theorems 2 and 3 of Jelenkévand Radovano#@i(2004c), we characterize the asymptotic performance of the
continuous time PAC algorithm for Zipf's law distributions with< « < 1. Careful examination of the proofs of these
results and the lemmas from Section 3 strongly suggests that exactly the same results hold for the DPAC algorithm as
well. Since the rigorous proofs of these results would involve lengthy calculations and repetitive arguments without
basically adding any new insights, we refrain from proving these results. Instead, for reasons of convenience, we just
restate them here and illustrate them with simulation experiments in the following section.

Theorem 2 Assume thajgN) = hyn/i,1 <1< N,wherehy is the normalization constant. Then, for ahy § < 1,
asN — oo,

(o N)BIC™) > o8] ~ Fi3) 2 100,15), (@3)

wheren; uniquely solves the equation

note that,I'(z,y), y > 0, is the incomplete Gamma function, i.E(z,y) = f;o e~'t*=1dt. Furthermore, for any
0<d<1,

i £6) - e (1) ”

k—oo

Remark 3 (i) Note that(log N)P[R™Y) > §N] — log(1/5) asN — oo. Thus, for large caches, the limit in
(44) shows that the DPAC policy approaches the optimal static algorithinimareases; (ii) A related result from
Lemma 4.7 of Fill (1996), in the context of the ordinary MTF searching-(1), shows the convergence in distribution
of the ratiolog C(™ /log N to a uniform random variable on a unit interval; this result corresponds to a sub-linear
scalingP[CN) > N*] - 1 —uasN — 00,0 < u < 1.
Theorem 3 Assume thaygN) = hy /1%, 1 <i < N, wherehy is the normalization constant arid< . < 1. Then,
forany0 < § < 1,asN — oo,
l1—« 1 1 1 1
[CY) > 6N] ~ Fi,(0) ok (ms)ar ~* r o) (45)

wheren; is the unique solution of the equation

1 1 n
1-—T (—ak,n) e =03

note thatl'(z, y), y > 0, is the incomplete Gamma function, iE(z, y) = fyoo e~'t*=1dt. Furthermore,l — Fy(9),
d € (0,1), is a proper distribution, withims ¢ F(5) = 1, limsy1 Fr(d) = 0 and

Jim Fp(d) =1—-0o"". (46)

Remark 4 (i) Similarly, (46) andP[RY) > §N] — 1—4'~> asN — oo demonstrate the asymptotic near optimality
of the DPAC policy; (ii) For the ordinary MTF searching & 1), the convergence of'¥) /N in distribution as

N — oo and the Laplace transform of the limiting distribution function were obtained in Lemma 4.5 of Fill (1996).
The result in its presented form, also for the ordinary LRU, was derived in Jelén{@f02).
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5 Numerical experiments

In this section we illustrate our main results stated in Theorems 1, 2 and 3. Even though the results are valid for large
cache sizes, our simulations show that the fault probability approximations, suggested by formulas (29), (43) and (45),
work very well for small caches as well.

5.1 Convergence to stationarity

In the presented experiments, we use a discrete time model without Poisson embedding—.e;,recall from the
remark after Lemma 1 that the fault probability does not depend on the selection of the request arriviat times.
In order to ensure that the simulated values of the fault probabilities do not deviate significantly from the stationary
ones, we first estimate the difference between the distributio@$%f andC"", whereC" is the search cost after
n requests with arbitrary initial conditions.
Thus, using (2) — (3), it is not hard to show that the difference between the tails of these distributions can be upper

bounded as
N

sup [P[CN) > 2] — P[CY) >x]‘ SenéZqi]P’[Ti >n—m+1].
¥ i=1

Now, using similar arguments as in (12) of Lemma 2, we obtain
P[T; > ] < Plr{) + (m — 1)X; > ]
i t t
<P [TQ > 2} +P [(m —1)X; > 2] : (47)

where now{n(f)} denote success times in a Bernoulli process with paramgeterd X; is independent O{T»,(Li)} with
geometric distribution having parameter

m—1
i m—1 m—1—
p= P 20 = Y (") - g
l=k—1
Next, (47) and the well known fact thaﬁ(ii) is geometric with parametegp; yield
P[T; > 1] < (1 - pigi)® + (1 — p;) =7

Thus, using the preceding bound, we obtain

n—m n—m

N
en <Y [(1 —pigi) 2 +(1-p)T0 | (48)
=1

Note that, since; is increasing inm, the larger values af. speed up the convergence of the search cost process
{C’éN)} to the stationary value. In other words, increasingnakes the algorithm more adaptable. On the other
hand, the largem implies the larger size of the additional storage needed to keep track of the past requests. Thus,
although the stationary performance of the DPAC algorithm is invariant,tthis parameter provides an important
design component whose choice has to balance algorithm complexity and adaptability.

5.2 Experiments

In the presented experiments we choose the number of documentsNo be1300 with popularities satisfying

¢ = hy/i% 1 < i < 1300, wherehy = (Zfil 1/i%)~1. Also, for the respective three experiments, we select
m = 20anda: 1. « = 1.4, 2. « = 1 and3. o = 0.8. The initial permutation of the list is chosen uniformly at
random and the set of initiah requests is taken to be empty. The fault probabilities are measured for cache sizes
x = 50j, 1 < j < 15. Simulation results are presented with “*” symbols on Figures 1, 2 and 3, while the optimal
static performance is presented with a thick solid line on the same figures.
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In our first experiment, we illustrate Theorem 1. Since our asymptotic formula is obtained for infinite number of
documentsV, it can be expected that asymptotic expression gives reasonable approximation of the fault probability
P[CN) > z] only if both N andz are large (with\V much larger tham:). However, our experiment shows that the
obtained approximation works well for relatively small values\boand almost all cache sizes< N.

Experiment 1 Here we selectv = 1.4. Before conducting the measurements, we allow for a warm-up time of the
first n requests to let the system reach its stationarity; then, the actual measurement time is also settpbsts
long. We measure the cache fault probabilities of the DRAT() policy for valuest = 1, 2. The experimental results

for the cases wheh > 3 are almost indistinguishable from the optimal performaf& > z], and, thus, we do

not present them on Figure 1. After estimatingin (48) for a given warm-up time af0'° requests, we obtain that

e, < 10712, which is negligible compared to the smallest measured probabilitid®( ?). Therefore, the measured
fault probabilities are essentially the stationary ones. The accuracy of approxirfatign) and the improvement in
performance are apparent from Figure 1.

_06 T T T T T T T
Iog1oP[R>x]
_o0sl ——log,,P(x) )}
%  simulated Iog1OP[C>x]

1t |

-1.21 g

1.4} |

-1.6 g

-1.81 R
o 100 200 300 400 500 600 700 800

cache size x

Fig. 1: lllustration for Experiment 1.

Experiment 2 Here, we setv = 1 and measure the cache fault probabilitiesifer 1, 2, 3. Again, both the warm-up

and measurement time are chosen te Ibequests long and equal te:= 2 x 108 for k = 1,2 andn = 10! for k = 3.

Since the normalization constaitty ) ~* = log N +++0(1) asN — oo, wherey is the Euler’s constant, the product

hy log N converges slowly td and, therefore, instead of using the approximab@(N) > z] ~ Fj.(z/N)/log N,

as suggested by Theorelmwe defineP(®) (z) = hy Fy,(z/N). We obtain that fok = 1,2, e,, < 3 x 10~!*, while

for k = 3, e, < 2 x 1079, which are insignificant when compared to the smallest measured probabilities. Thus,
the process is basically stationary. The accuracy of approximétieri=) and the improvement in performance are
apparent from Figure 2.

Experiment 3 Finally, the third example assumas= 0.8 and considers casés= 1, 2, 3. Here, we seleat = 10'°

to be the warm-up time as well as the actual measurement time. Similarly as in the case bf due to the slow
convergence ohyN'=*/(1 — a) — 1 asN — oo, we use an estimafe(®)(z) = hy(N'=*/(1 — a))F)(z/N)

instead of F,(z/N) that can be inferred from Theorems We computee,, < 3 x 1075, which is insignificant
compared to the smallest measured probabilities. Thus, the process is basically stationary. Once again, the validity of
approximationP(®) (z) and the benefit of the DPAC algorithm are evident from Figure 3.
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-0.2 ‘
log ’ 0P[F§>><]

*  simulated log, ;P[C>X] i
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Fig. 2: lllustration for Experiment 2.
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Fig. 3: lllustration for Experiment 3.

6 Concluding remarks

In this paper we introduce a discrete version of the recently proposed continuous time PAC replacement rule in Je-
lenkovic and Radovanoii(2004c) that possesses all the desirable properties of the LRU policy, such as low com-

plexity, ease of implementation and adaptability to variable Web access patterns. In addition to these attributes, the
new DPAC policy eliminates drawbacks of the PAC rule, such as its dependence on the request arrival times and
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variable storage requirements. However, the DPAC policy is significantly harder to analyze than the continuous PAC
rule. In this respect, we develop a new analytic technique that allows us to decouple replacement decisions of the
requested documents and show that the fault probability of the DPAC algorithm, for large cache sizes, is very close
to the optimal frequency algorithm even for small valuesof 2, 3; this implies negligible additional complexity
relative to the classical LRU policy. In addition, the theoretical results are further validated using simulations that
show significant improvement in performance of the DPAC algorithm in comparison with the LRU scheme, even for
small cache sizes and the number of documen®$. Overall, given the considerable improvement in performance
and low implementation complexity, we expect that the DPAC algorithm has a high potential for practical use.

Finally, in Web caching applications, documents typically have variable sizes. In this regard, by straightforward ex-
tension of the randomization procedure from Jelenkawd Radovanoi(2004b), one can easily design a randomized
DPAC algorithm that is nearly optimal for variable document sizes as well.

7 Proof of Lemma 5

The casé: = 1, corresponding to the ordinary LRU algorithm, is easy since the varidbk® independent and expo-
nentially distributed with parametegs. Thus, the result follows from Lemmas 3 and 4 of Jelen&awid Radovanogi
(2004a). Hence, in the rest of the proof we assume &k > 2.

Note that, for anyi; > 1,

PlZuTmﬂm}zx] g]P’[Zl[Ti<z9z}zxio ; (49)
=1 1=10
a specificip will be selected later in the proof. Lét—j@) };>1 be an ordered sequence of request times for documents

i > i, i.e., {T;m}jzl = UiZio{Tr(Li)}nzl- We usen(j), j > 1, to denote the index of poir@@) in the original

sequencér, tn>1, i.e.,Tj@) = To(j)- Then, since proceds,, } is Poisson andR,, } is an i.i.d. sequence independent
of {7, }, by Poisson decomposition theorem, procgsg;) = TJ““)}jZl is also Poisson with ratg_, ;¢

Next, similarly as in Lemma 3, we group the poim@m)} into cycles. The first cyclé; will be closed interval of
time that starts with,, ;) and its length is determined by the following procedure. Let random variablee defined
as

Zl £ lnf{] >0: M%(Tn(l)jt(jfl)m«kl) = O},
A

whereM (1) = >2,5;, Mi(7). In other words, we observe groupsiofconsecutive requests until we come to a
group ofm requests where there are no requests for docunients,. Then, the first cycleC;, will be the interval
[Tn(1)> Tn(1)+mz, ). Next, starting from the first point of proce$s,, ;) };>1 after request,,(1)4mz,, Say 7, ), we
define

Zo £ lnf{J >0: M%(Tn(l)-‘r(j—l)m-&-l) = O}a
and, therefore, the second cycle is intel®ak= [7,,;), Tn(1)+mz,]. We continue this procedure indefinitely.

Then, denote the points of time that represent the beginnings of the previously defined gytlesl, by {O; };>1.
Clearly, from the independence assumptionggn} and{R, }, {©;} is a renewal process with renewal intervals, for
j > 1, satisfying

mZy

d T
0,41 —0; L7 4 Z &is
i=1

where{¢;} is an i.i.d. sequence of exponential random variables with mean 1 that is independem{@oadel.
Thus, by neglecting the sum in the preceding expression (i.e., the lengths of the cycles), the beginning of each cycle
can be lower bounded with

4 (o)
Next, on each cycl€;, j > 1, define an event that at least two distinct items are moved to the first position of the
list during that cycle

APV 2 4w 3iy, iy > g, i1 # 2, 3Ty g € Cjy R(my) = i, My, (0,) > kfor i = 1,2}
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Similarly, for eachi > iy, we define an event that exactly one documiiut no other documents) is moved to the
first position of the list during cyclé;

A;-i) £ {w: 31, € Cj, R(1) =i, My(1,) > k} N (./45»0)) ,

whereA°¢ denotes a complement of evest for each fixedj, these events are disjoint. Then, due to the independence
properties of our reference model and the fact that thelgsbints in each cycle do not contain requests for documents
i > o, they are independent on different cycles and for fixedually distributed; lep;, £ IE”[A%’)], i>1ip0ri=0.

Now, using the bound in (50) and the Poisson decomposition theorem, it is easy to see that, for eachhfexed

beginning of the first cycle where eveA§i) happens is lower bounded liy, whereL; are independent exponential
random variables with parameters equam@izm q;. Then, fori > iy, the random times defined in (6) are lower

bounded by the beginning of the first cycle where evéj‘fﬁ U A§i) occurs, which is further lower bounded by
T; > L; \ Ly, (51)

wherez A y = min(z, y).
Next, we provide upper bounds on each of the probabilifiedJsing the same arguments as in (19) of Lemma 3,
we obtain that for any > 0, we can chosé, large enough, such that for all> 7,

‘11 m—1\
; —_— i 2
The probabilityp, can be bounded as
po <P[Z; > [+ PAY, Z; <]
l

<H|Y ¢ | +P4”, z; <

J=to
l
<H(> ¢+ > PAPGLR).Z <1, (53)
Jj=to J1,J2210,J1#72

wherel is a fixed constant that will be selected later amﬁ) (41, 72) is the event that during cyclg; documentgj,
andj, are moved to the first position of the list. Then,

P A1, s2), 20 < 1] =P [R(©1) = jn, A, ), 20 < 1]
P [R(@l) = jo, A (j1,52), Z1 < l}
P [R(@l) % g1, jo. A (1, g2 ), Z1 < l}

£ po1(j1, j2) + po2(j1, j2) + po3 (41, j=)- (54)

Now, we upper bound the first term of (54),

d;
po1(J1,J2) < #P [Mj, (Taqy41,ml) > k=1, My, (o)1, ml) > k]
j=io 9i
< Z dj, - ]P)[Mjl (Tl,ml) >k — I,MjQ(Tl,ml) > k]
J=io 1J

ml—k ml—I

qu
B 145,45 (1
Z] 10 QJ kel ZZ ll'lz ml - ll — 12) J1 172

-4 — qu)

4;
S ) (qu 1(];2)

_Z] 10J
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the last inequality holds becausd is fixed and finitej, jo > ig, andig is large enough. Thus, we obtain

.. Hd g
po1(j1,J2) < 72031 ]2; (55)
j=io 4i
Similarly, we derive
k k
45, 9;
po2(J1, J2) Zj:io 4 (56)
and, by applying the same type of arguments, we bound
po3(j1,72) < Hal ¢F, < =22 (57)
J1172 Zj:qio q;
Therefore, (55), (56), (57) and (54) imply that for aity jo > 4o, j1 # Jjo,
P 0)/: qflqﬁ
[Aj (J1,J2): Z; < 1] SHW7 (58)
G=ig 9J

where constant{ is independent of; andj.. Now, by replacing the preceding bound in (53), we derive that for all
1o large enough

1
> H
po =t (Z Qj) ORI ST 9
=0

J=to
After setting the necessary ground for our analysis, we upper bound the left hand side of (49) as

P Zl[Ti<’l9m]2.’L‘—io <P 1[LiAL0<ﬁm]Z$—i0]
1=1p Li=t0
<SP | 1L ALg < U, Lo > 0a] > & — g | +P[Lo < 9]
Li=1g
<SP UL <] > 2 —ig| +P[Lo < Ua]. (60)
Li=t0

Now, from (52),P[L; < ¥,] < 1 — e~ +9(i2)a% for ; > iy andi, large enough. Furthermore, assigning
ip = [ex] and applying Lemma 6 of the Appendix, we deriveras: oo,

E [Z 1[Li<19z]] gr(lalk) o ((z:f))“umwg« (61)

i>€ex

Then, if we replace, and use (61), it follows, as — oo, thatE [Zizm 1[L; < 19,,]] S(1-26)z < (1—¢€)(x—ex).
Thus, sincel;, i > iy, are mutually independent, using large deviation result from Lemma 7, we show that the first
term in (60) is bounded, for sonte> 0, by

i>€ex

1
P [Z 1[L; < ¥, zx—ex] §2e‘9”=o(xa1> as z — oo, (62)
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Next, we estimate the second term of (60). Using (59) Wjtk: [ez] and choosing = [(2ak — 2) /(v — 1)] — 1,
such thafae — 1)(1 + 1) > 2ak — 2, we derive
PlLo < W] < 1— e TP0 Lizea d

SHaf"k[ ! . }

rla=1)(+1) pr2ak—2
Haok H 1
S 5ok 3 S ak3 T (x@—l) as z — o, (63)
sincek > 2 anda > 1. Finally, replacing (63) and (62) in (60), implies the statement of the lemma. &

Appendix

The following lemmas correspond to Lemma 2 of Jelen&d®©999) and Lemma 4 of Jelenkévand Radovanoti
(2004a), respectively.

Lemma6 LetS(t) = > ,2, B;(t) and assume; ~ ¢/i* asi — oo, Witha > 1 andc > 0. Then, ag — oo,

m(t) 2 ES(#) ~ T (1 - 1) i

[e%

Lemma? Let{B;,1 <i < N}, N < oo, be a sequence of independent Bernoulli random variakSIes,ZiN:1 B;
andm = E[S]. Then for any > 0, there existg. > 0, such that

P[|S — m| > me] < 2e %™,
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