Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle

Abstract : Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algorithms for finding large non―crossing $\textit{harmonic}$ matchings or paths, i. e. the matchings or paths in which no two edges have the same label. When the point labels are chosen uniformly at random, and independently of each other, our matching algorithm with high probability (w.h.p.) delivers a nearly―perfect matching, a matching of size $n/2 - O(n^{1/3}\ln n)$.
Type de document :
Communication dans un congrès
Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.17-26, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184038
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 15:52:20
Dernière modification le : mardi 19 décembre 2017 - 13:16:02
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:40:38

Fichier

dmAD0103.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184038, version 1

Collections

Citation

József Balogh, Boris Pittel, Gelasio Salazar. Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle. Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.17-26, 2005, DMTCS Proceedings. 〈hal-01184038〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

147