Algorithmic and combinatoric aspects of multiple harmonic sums

Abstract : Ordinary generating series of multiple harmonic sums admit a full singular expansion in the basis of functions $\{(1-z)^α \log^β (1-z)\}_{α ∈ℤ, β ∈ℕ}$, near the singularity $z=1$. A constructive proof of this result is given, and, by combinatoric aspects, an explicit evaluation of Taylor coefficients of functions in some polylogarithmic algebra is obtained. In particular, the asymptotic expansion of multiple harmonic sums is easily deduced.
Type de document :
Communication dans un congrès
Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.59-70, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184041
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 15:52:34
Dernière modification le : mercredi 10 mai 2017 - 17:39:22
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:40:42

Fichier

dmAD0107.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184041, version 1

Collections

Citation

Christian Costermans, Jean-Yves Enjalbert, Hoang Ngoc Minh. Algorithmic and combinatoric aspects of multiple harmonic sums. Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.59-70, 2005, DMTCS Proceedings. 〈hal-01184041〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

54