M. Ainsworth, P. Monk, and W. Muniz, Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation, Journal of Scientific Computing, vol.15, issue.2, pp.1-3, 2006.
DOI : 10.1007/978-3-662-04823-8

X. Antoine, H. Barucq, and A. Bendali, Bayliss???Turkel-like Radiation Conditions on Surfaces of Arbitrary Shape, Journal of Mathematical Analysis and Applications, vol.229, issue.1, pp.184-211, 1999.
DOI : 10.1006/jmaa.1998.6153

X. Antoine, M. Darbas, and Y. Y. Lu, An improved surface radiation condition for high-frequency acoustic scattering problems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.4060-4074, 2006.
DOI : 10.1016/j.cma.2005.07.010

C. Baldassari, H. Barucq, H. Calandra, and J. , Diaz Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration, Geophysical Prospecting, vol.59, issue.5, pp.907-919, 2011.

H. Barucq, M. Bergot, J. Chabassier, and E. Estecahandy, Derivation of high order absorbing boundary conditions for the Helmholtz equation in 2D, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085180

H. Barucq, H. Calandra, J. Diaz, and F. , Ventimiglia High-order time discretization of the wave equation by Nabla-p scheme ESAIM: Proceedings, pp.67-74, 2014.

H. Barucq, J. Diaz, and V. Duprat, LONG-TERM STABILITY ANALYSIS OF ACOUSTIC ABSORBING BOUNDARY CONDITIONS, Mathematical Models and Methods in Applied Sciences, vol.36, issue.11, pp.2129-2154, 2013.
DOI : 10.1016/j.cam.2009.08.050

H. Barucq, R. Djellouli, and E. Estecahandy, Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, International Journal for Numerical Methods in Engineering, vol.62, issue.6, pp.747-780, 2014.
DOI : 10.1121/1.381680

URL : https://hal.archives-ouvertes.fr/hal-00931852

A. Bayliss, M. Gunzburger, and E. Turkel, Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions, SIAM Journal on Applied Mathematics, vol.42, issue.2, pp.430-451, 1982.
DOI : 10.1137/0142032

M. Duruflé, Intégration numérique etélémentsetéléments finis d'ordré elevé appliqués auxéquations auxéquations de Maxwell en régime harmonique, pp.253-262, 2006.

DOI : 10.1190/1.1440185

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation, vol.31, issue.139, pp.629-651, 1977.
DOI : 10.1090/S0025-5718-1977-0436612-4

B. Hanouzet and M. Sesqù-es, Absorbing boundary conditions for Maxwells equations, in " Non-Linear Hyperbolic Problems: Theoretical, Applied and Computational Aspects, Eds. Notes Numer. Fluid Dynamics, vol.43, pp.315-322, 1992.

B. Stupfel, Absorbing boundary conditions on arbitrary boundaries for the scalar and vector wave equations, IEEE Transactions on Antennas and Propagation, vol.42, issue.6, pp.773-780, 1994.
DOI : 10.1109/8.301695