N
N

N

HAL

open science

A tight upper bound on the size of the antidictionary of
a binary string
Hiroyoshi Morita, Takahiro Ota

» To cite this version:

Hiroyoshi Morita, Takahiro Ota. A tight upper bound on the size of the antidictionary of a binary
string. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.393-398,

10.46298 /dmtcs.3378 . hal-01184213

HAL Id: hal-01184213
https://inria.hal.science/hal-01184213
Submitted on 13 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01184213
https://hal.archives-ouvertes.fr

2005 International Conference on Analysis of Algorithms DMTCS proc.AD, 2005, 393-398

A tight upper bound on the size of the
antidictionary of a binary string

Hiroyoshi Moritd " and Takahiro Ota

!Graduate School of Information Systems, University of Electro-Communications, Chofugaoka 1-5—-1, Chofu, Tokyo,
182-8585 Japan?Dept. of Electronic Engineering, Nagano Prefectural Institute of Technology, Shimonogo 813-8,
Ueda, Nagano, 386—1211 Japan.

A tight upper bound of the size of the antidictionary of a binary string is presented. And it is shown that the size of
the antidictionary of a binary sting is always smaller than or equal to that of its dictionary. Moreover, an algorithm to
reconstruct its dictionary from its antidictionary is given.

Keywords: antidictionary, minimum forbidden words, suffix trees, data compression, ECG

1 Introduction

An antidictionary is a set of words that never appear in a binary string. In 2000, Crochemore et al. (2000)
presented a compression algorithm of binary text using antidictionary called DCA. Their coding algorithm
has been tested on the Calgary Corpus, and their experimental results show that we get compression ratios
equivalent to those of most common compressors such as pkzip. Recently, an online source coding scheme
based on DCA is presented to apply for compressing losslessly ECG (ElectroCardioGram) in Ota and
Morita (2004). Experimental results show that their algorithm achieved 10% smaller compression ratio
than LZ ones.

In this article, we present au upper bound of the size of the antidictionary of a binary string. The upper
bound we obtained is stronger than that in Crochemore et al. (1998). And itis tight in the sense there exists
a string to attain the bound. We also proved that the antidictionary of a binary string is always smaller
than or equal to that of the dictionary of the same string. Moreover, we give an algorithm to reconstruct
the dictionary from the antidictionary.

This article is organized as follows. Section 2 gives definitions on antidictionary with some examples.

In Sections 3 and 4, we investigate the size of the antidictionary of a given string and derive a tight upper
bound on its size. Section 5 presents an algorithm to reconstruct the dictionary from the antidictionary of
a given string and Section 6 summarizes our results.

2 Definitions on Antidictionary
Let.A be the binary alphabgb, 1} and.A* be the set of all finite-length strings ovdrincluding the null
string of length zero, denoted by The dictionaryD(x) of a binary stringe = z1x2...2, € A*is
defined as the set of all the substringseof
D(x) ={xzos1 xm|l <L<m <n}U{A}L

For example, it = 01011, thenD(x) is given by

D(01011) = {A,0,1,01,10,11,010,011,101,0101,1011,01011}.
Letting D¢(x) = A*\D(x), a stringv = vv2 - - - v, € D¢() such that

V1Vg - Um—1 € D(x) anduvqvs . .. v, € D(x)
1365-80500) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

394 Hiroyoshi Morita and Takahiro Ota

Tab. 1: LIST OF ANTIDICTIONARY OF SEVERALZ’S.

z AD(z) |z AD(z)
0 {00} 000 {0000}
1 {11} 001 {000,10,11}
00 {000} 010 {00,101,11}

01 {00,10,11} || 011 {00,111,10}

0e— — |

T(01011)

Fig. 1: Suffix trie of z = 01011.

is called a minimal forbidden word (MFW) ai. The antidictionary ofe, denoted byAD(x), is defined
as the set of all the MFW'’s of. In case ofx = 01011, AD(z) = {00, 110,111,1010}. Table 1 shows
the antidictionaries of several binary strings.

Let S(z) be the set of suffices af:

S(x) = { A} U{zzipr ... 20|l <i<n}

The suffix trieT'(x) is a tree structure (Gusfield, 1997) such that every suffik isfstored as a path from

the root to a node ifi'(x) where every edge is labeled with a symboldn Figure 1 shows the suffix trie

of x = 01011. Note that some suffices are implicitly represented as paths from the root to internal nodes
inT'(x). In fact, every string irD(x) can be represented as a path from the root to a node. Reversely, for
every nodep in T'(x), a string represented by a path from the rogt te in D(x). Hence, we obtain the
following statement.

Proposition 1 (Suffix Trie representing Dictionary). A node inT(x) corresponds uniquely to an ele-
ment inD(x) and vice versa.

3 A Necessary Condition on MFW'’s

A necessary condition that a string &4t is an MFW ofx can be derived by adding new nodedtgr) as
follows: If p is a leaf inT'(x), then create two nodes connecteght®therwise, and ip has only a child
node, create a new node connecteg.tdhe obtained tree, denoted By (), is a binary tree such that
every internal node has two child nodes (See Fig. 2). Moreovew (e} be the string associated with the
path from the root to a nodein T ().

Itis shown that every MFW ot is represented by a path from the root to a jeaf 7., (x) since for its
parent node, w(q) € D(z) butw(p) ¢ D(x) and there exists € A such thatw(p) = w(q)a. Hence,
we obtain the following proposition.

Proposition 2. If v € A* is an MFW ofz, then there exists a leafin Te(z) such thatv = w(p).

From Propositions 1 and 2, we can derive a rough estimation on the sig®@£). Throughout this
article, the size, or the cardinality of a sets denoted by4S.

Theorem 1. For z € A*, we have

#AD(z) < #D(z) + 1.

TThis work was supported by Grant-in-Aid for Scientific Research no.173601782332 of Japan Society for the Promotion of
Science.

A tight upper bound on the size of the antidictionary of a binary string 395

0e— —|

n1

P2

Toe(01011)

Fig. 2: Tex(x) corresponding to the suffix trie in Figure 1.

Proof. Letm; be the number of nodes havikghild nodes inl'(x) where0 < k < 2. From Proposition
1, we have

#D(x) = mo + my + ma.

Sincemg = mo + 1, we can rewrite it as
#D(w) = 2m0 +mi — 1.

On the other hand, the number of leave§in(x) is upper bounded by mq + m;. Hence Proposition 2
gives
#AD(z) < 2mg + my.

Therefore, we havétAD(x) < #D(x) + 1. O

Recently, Janson et al. (2004) investigated the average size of a dicitionary of a random binary string
generated by a mixing model. It is asymptotically equahtg2. In the same paper, they did more
precise analysis on the average behavior of the number of distinct substrings in a string of.lergth
an alphabet of sizel. The size of an antidictionary, however, is much smaller than that of the dictionary
on average as we will discuss below.

4 A Tight Upper Bound on Size of Antidictionary

Hereafter, for any node in Te(x), let o(r) be a node such thab(o(r)) is equal to the string
obtained by removing the first symbol af(r). The following theorem gives a necessary and sufficient
condition thatw (p) for a leafp in T (x) is an MFW ofz.

Theorem 2 (A necessary and sufficient condition on MFW).For a leaf nodep in T (), w(p) is an
MFW of z if and only ifo(p) is an internal node i, (z).

Proof. Suppose thap is a leaf inT..(x) andq is its parent node. Then there exists= .4 such that
w(p) = w(g)a. From the definition o (x), w(p) ¢ D(x) while w(q) € D(z). If o(p) is an internal
node inT(x), thenw(o(p)) € D(x) from Proposition 1. Moreover, there existse A such that
w(p) = bw(o(p)). Hencew(p) is an MFW ofz.

Conversely, assume that(p) is an MFW ofz for a leafp in To.(z). Rewritingw(p) ascu with a
certain symbot € A, stringu corresponds to node(p), that is,u = w(o(p)). Sincew(p) is an MFW,
w(o(p)) € D(z). Thereforeg(p) is an internal node ife (). O

Corollary 1. Suppose that is a leaf inT..(x) and its parent node is an internal node irff'(z). Then,
w(p) is an MFW ofz if and only if noder(¢) has two child nodes iff (x).

Proof. If nodeo(g) has two child nodes, one of themdsp). Henceo(p) is a node inl'(x). Thus, it is
also an internal node i (). Conversely, assume thafp) is an internal node iffe (). Sincep is a
leaf in .. (), its parent nodg has two child nodes including Hence g (¢) does so too. O

396 Hiroyoshi Morita and Takahiro Ota

Corollary 1 shows that the size gfD(x) is at leastn, wherems is the number of nodes having two
child nodes i’ (x) as defined in Theorem 1. In Figure 2, strifi§s1010, 110 and111 are corresponding
to leaves; to py4, respectively. Since their parents satisfy the conditions of Corollary 1, these strings are
MFW'’s of £ = 01011. And there are no other leaves whose parents do so.

Theorem 3 (MFW sprouting from leaves inT'(x)). For aleafqin T'(x), stringw(p) associated withp
that is one ofy’s child nodes iT(x) is an MFW if and only if the path from the root ¢ds the shortest
one among all the leaves ifi(x).

Proof. First, we assume thatis the leafy* with the shortest path i (). Theno(¢*) is an internal node
in T'(x). Thus,o(g*) has at least one child noden T'(x). Since there exists a child nogé of ¢* such
thatr = o(p*), w(p*) is an MFW ofz.

Conversely, ify # ¢*, thenw(¢*) is a suffix ofw(q) sincew(q) is strictly longer thanv(¢*) and both
of them are suffices of. Let g be a child node of in T..(x) such thatw (p*) is a suffix ofw(g) where
w(p*) is an MFW defined above. Thus neithefg) is in D(x). Therefore any suffices ab(g) that are
longer than or equal taw (p*) are not inD(z). Hence,w(g) is not an MFW. Taking the contraposition
completes the proof of Theorem 3. O

For example, two leaves associated with stringdand111 in 7., (01011) of Figure 2 are MFW’s that
satisfy the condition of Theorem 3. Finally, we have tH4?(01011) = {00, 110, 1010, 111}.

Theorem 4 (An improved bound of Theorem 1). Given a binary stringe of lengthn, we have
#AD(xz) <n+ 1.
And if z is the all-one stringdl - - - 1 or the all-zero strind) - - - 0, then
#AD(z) = 1.
Proof. Combining the results of Corollary 1 and Theorem 3, we have
#AD(z) < mg + 2.
Sincemy < n andmg = ms + 1, the above inequality is evaluated further from above as follows:
#AD(x) <mo+1<n+1.
If z is the all-one string - - - 1 of lengthn, the all-one string of length 41 is an MFW ofx and any other

strings are not. Thereforé;AD(x) = 1. In casex is the all-zero string of length, the same argument
derives the equality. O

Since the equality holds fat = 01 (see Table 1), the upper bound obtained in Theorem 4 is tight. In
case of the binary alphabet, Corollary 9 in Crochemore et al. (1998) is translated into

3 if x| <2,
#AD(xz) < (2 else ifz is the all-one string - - - 1 or the all-zero string - - - 0,
2n — 2 else

where|z| is the length ofe. Forn > 4, the results in Theorem 4 is stronger than the above one.
Moreover, since all the suffices efincluding the null string are contained(x), we have#D(z) >

n + 1. Therefore, we obtain the following corollary.

Corollary 2. Forz € A",

#AD(z) < #D(x).

A tight upper bound on the size of the antidictionary of a binary string 397

Tap(010110)

Fig. 3: An example of digital triel’a p (010110).

5 From Antidictionary to Dictionary

The antidictionaryAD(x) of a given stringz € .A* can be represented as a digital trie denoted by
Tap(x). As an example, Figure 3 shows a digital trie representing the antidictionary-ef010110
where4D(010110) = {00,1010,1101,111}. An MFW in AD(x) is corresponding to a path from the
root to a leaf inl’sp ().

In Algorithm AD2D described below, starting withs (x), nodes inl’(x) will be reproduced step by
step. However, it will be determined on each process of the algorithm whether those nodes are internal
or external nodes ifi'(z). Hence, nodes created by the algorithm are tentatively called ‘neutral’ nodes
until we know their connectivity, that is, the number of their child nodes and their directions. Besides, at
the initial state of the algorithm, internal nodesTinp (x) should be treated as neutral nodes since their
connectivity are not known at the initial state.

(Algorithm AD2D)
0. LetT beTAD(:I}).
1. For each neutral nodein T in the breadth-first order:
1-1. If o(p) has two internal nodes as child nodes, create one or two new nodes

connecting te so thatp has two child nodes.

1-2. If o(p) has only one internal nodgas a child node, create a new node connect-
ing top so thatp has a child node with the same directionjas

1-3. If o(p) has no child nodes, letbe an external node.

2. Remove all the external nodesiinp from T
3. OutputT asT'(zx). Then stop.

Figure 4 depicts the process of reconstructing the dictionasy-6f010110 from its antidictionary.

Theorem 5. The suffix triel’(x) is reproduced fromY'4 p () by means of AlgorithmAD2D.

Proof. Let p be an internal node iff'4p (). From the definition of MFWw (p) is in D(x). Suppose
thatp has only a child node. Then, AlgorithAD2D sprouts a new child nodgefrom p if o(g) is not an
external node iff". The new nodeg becomes neutral ang(q) € D(x).

The connectivity of a neutral nodeis determined by that of (). That is, ifo(r) hask child nodes in
T(x) wherek = 0, 1,2, thenr does so. Since the algorithm processes neutral nodes in the breadth-first
order, the connectively ef(r) is known whenr is processed. Thus, all the sufficeswofvill be reproduced
in Step 1 of the algorithm. Removing all the external nodeB i from T', we obtainT'(x). O

Sincex is equal tow(p) for a certain leap that has the longest path among leaves &), Algorithm
AD2D can reproduce from AD(x). Hence we have the following corollary.

Corollary 3. The original stringz can be reproduced fromdD(x).

398 Hiroyoshi Morita and Takahiro Ota

</ % K\// \7 N
T (/;)10110) <\ <\ ; /\\
Y, O
\ > \\ /N > ‘<\ /N > <
Somi 50
TR K . \%'%
L R

Fig. 4: 7(010110) is reproduced fronT’4 p (010110) by Algorithm AD2D where non-external nodes are indexed by
numbers.
6 Conclusions

In this article, we derived an upper bound on the size of the antidictionary of a given binaryastrgl
we proved that the antidictionary af is always smaller than or equal to the dictionarymfMoreover,
we gave an algorithm to reconstruct the dictionargdfom the antidictionary ofc.

Acknowledgements

The authors express their thanks to Philippe Flajolet of INRIA, Rocquencourt, France to call their attention
to Janson et al. (2004).

References

M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden wohdf@rmation Processing
Letters 67(3):111-117, 1998.

M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. ata compression using antidictiorfames.
IEEE, 88(11):1756-1768, 2000.

D. Gusfield.Algorithms on strings, trees, and sequences: Computer Science and Computational.Biology
Cambridge Univ. Press, 1997.

S. Janson, S. Lonardi, and W. Szpankowski. On average sequence compldwdtyretical Computer
Science326:213-227, 2004.

T. Ota and H. Morita. One-path ecg lossless compression using antidictionBl€E Trans. Funda-
mentals (Japanese Editign)87-A(9):1187-1195, 2004.

