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Classification of large Polya-Eggenberger
urns with regard to their asymptotics

Nicolas Pouyanne

! Département de ma#matiques, LAMA UMR 8100 CNRS, Univegsie Versailles - Saint-Quentin
45, avenue des Etats-Unis, 78035 Versailles cedex

This article deals with &lya generalized urn models with constant balance in any dimension. It is based on the
algebraic approach of Pouyanne (2005) and classifies urns having “large” eigenvalues in five classes, depending on
their almost sure asymptotics. These classes are described in terms of the spectrum of the urn’s replacement matrix
and examples of each case are treated. We study the cases of so-called cyclic urns in any dimensiaryaearch

trees form > 27.

1 Introduction

We consider (generalized balanced)y-Eggenberger urns with balls efdifferent types (or colours),

s being any integer 2. Namely, under this model, the urn may contain balls of colours named, s

and evolves as a Markov process as follows. Its initial composition is described by a non random column-
vectorU; = Y(Uyp,...,U;s) whosek-th coordinate is the initial number of balls of colokr One
proceeds to successive draws of one ball at random in the urn, any ball being at any time equally likely
drawn. At each draw, one inspects the colour of the drawn ball, places it back into the urn and adds other
balls following invariably the same rule. This rule is given by the (non randepiacement matrix

R = (rij)1<ij<s;

the entryr; ; being the number of balls of coloirone adds if a ball of colour has been drawn. In our

model, the replacement matrix has nonnegative off-diagonal entries, but may have negative diagonal ones
(that correspond better to prelevement than to addition of balls), submitted to the following assumptions:
1- (balance hypothesig)S € Z>1, Vk € {1,...,s},

> kg =S 1)
j=1
2- (sufficient condition of tenabilityyk € {1,. .., s},
Tk,k Z 0 or UL]@-Z + er"kz = Tk’kZ. (2)
j=1

The composition of the urn will be denoted By, = *(U,,1,...,U,.s), the numberl, , being the
number of balls of colouk: aftern — 1 draws. The subject of our study is the asymptotic behaviour of this
random vector as tends to infinity. Hypothesis 1- requires the total number of added balls at each draw
to be always the same; this number will be denotedtnd calledbalanceof the urn. If|U; | denotes

the initial total number of balls, this implies that the urn contdirig + n.S balls after then-th draw.
Arithmetical Hypothesis 2- is a classical sufficient condition for the process not to extinguish after a finite
number of draws (Bagchi and Pal (1985), Gouet (1997), Flajolet et al. (2005), Pouyanne (2005)), as can
be checked by an elementary induction. One can replace it by conditioning the whole asymptotic study to
non extinction.

Polya-Eggenberger urns have been studied by many authors since the original atyeeI30).
Roughly speaking, employed methods have been direct probabilistic considerations, generating functions
and patrtial differential equations, embedding in continuous time process and martingale arguments; one
can refer to Flajolet et al. (2005) or Puyhaubert (2005) for good surveys on the subject.
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A Polya-Eggenberger urn defined By and R being given, one can consider it as a random walk in
R® havingU; as initial point, the incremerit,,..; — U,, at timen being at random one ak’s rows, the
probability of thek-th one to be chosen being equallip ;. /(|U1| + (n — 1)S) (proportion of balls of
colourk after the(n — 1)-st draw).

Adopting this point of view, westandardizethe process (or the urn) the following way. Our random
vector of interest isX,, = éUn. It can be interpreted as @Ka-Eggenberger urn with balandg(i.e.
with S = 1), the replacement matri%eR having rational entries. The extension of this point of view to
real-valued replacement matrix leads to the definition of what has been Pali@lprocessin Pouyanne
(2005).

When1 is simple eigenvalue of R, the random vectot/,, admits an almost sure non random drift.
More precisely, there exists a non random veetprsuch thatl,,/n converges almost surely t§u,
asn tends to infinity. This vector; is the only vector fixed by;—fR whose coordinates’ sum equals
1. When1 is multiple eigenvalue of; R, thenU,, /n converges almost surely to a random vector that
follows a Dirichlet distribution (see below and Gouet (1997) for the almost sure asymptofits/oj.
The asymptotic behaviour of the differendg, — nv; has been for a long time known to depend on the
spectrum ofR. We will say that a Blya-Eggenberger urn with replacement matfixand balances is
small when1 is simple eigenvalue ogR and when every other eigenvalue«?R has a real part 1/2.
Otherwise, it will be saidarge.

When the urn is small, under some conditions of irreducibility, one can establish convergence in law of
the normalisatiori X,, — nv;)/+/nlog” n to a centered Gaussian vector, the integdepending only on
the conjugacy class ak (Athreya and Karlin (1968), Janson (2004)). If one releases this irreducibility,
considering for instance urns with triangular replacement matrix, convergence in distribution (to most of-
ten non normal laws) has been shown and moments have been computed in several cases in low dimension
(see Janson (2005), Puyhaubert (2005)).

Our case of interest is the one of large urns. Almost sure convergence-like resilts-emuv; have
been established since the work of Athreya and Karlin (Athreya and Karlin (1968)) and refined in some
more general cases by Janson (Janson (2004)) by means of embedding of the process in continuous time,
but these results require still some irreducibility-type assumptions. In Pouyanne (2005), in any case of
large urns, following a different method that stays in the discrete field, almost suré{dadanyp > 1)
asymptotics is established and a way to compute the moments of limit random vectors is given.

In this paper, we classify largedbRa-Eggenberger urns with regard to their asymptotics, give some
generic example of each case and some other new results about particular families of urns (general two-
dimensional urn, cyclic urnsp-ary search trees).

2 Asymptotics of large Polya-Eggenberger urns

Basic objects and notations are introduced in this section, following the method of Pouyanne (2005). Then
we state the classification of large urns with regard to their asymptotics.

2.1 Notations and overview of the method

Let’s consider ars-dimensional Blya-Eggenberger ur(l,,),,>1 with balanceS defined as in Section 1
by its initial composition/; and its replacement matriX. Let be the renormalized initial total number

of balls, namely
1

T — —

S

Let A be thes x s matrix with rational (or real if one admits the generalized definition obly#@process)
entries defined as the transpose

|Ui| = | X1].

1
A=ZR
g R

We adopt notations and definitions of Pouyanne (2005).ukLéet. . , wy be the column-vectors of and
x1,...,xs the generic coordinates &° or C*. With this notation, theransition operator® is given by
the formula

O(f) () = S wn [l + wi) — F(o)], 3)
k=1

for any functionf : C* — V (V is any vector space) and any= (z1,...,x5) € C®. This operator has a
good decomposition on polynomials spaces given by so called reduced polynomials of the process; these
polynomials are defined just below.
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Let (ux)1<k<s be aJordan basisof the process,e. a basis of linear forms oR® or C* that satisfy

1-ui(2) = > <pc, vk forall z;

2-up o A = Myug +cup—1 forall k > 2, where the\, are complex numbers (necessarily eigenvalues of
A) and where the;, are numbers id0, 1} that satisfy\;, # A\y—1 = e = 0.

This implies that the transpose df has a Jordan normal form in this basis and thais fixed by A
(balance assumption). A Jordan basis being chosen, we will den@te hy < s its dual basis of vectors

of R* or C*.

A subset/ C {1,...,s} is calledmonogenic block of indiceswhen.J has the formJ = {m,m +
L...om+r}(r>0m>1,m+r < s)withe,, =0,e, = 1foreveryk € {m+1,..., m+r}
and.J is maximal for this property. In other wordg,is monogenic wheVect{u;, j € J} is A-stable
and when the matrix of the endomorphism\ekt{u;, j € J} induced by4 in the (u;); basis is one of
the Jordan blocks of the Jordan normal formdofnentioned above. Any monogenic block of indices
associated with a unique eigenvaluebthat will be denoted by

A().
We denote bysp(A) the set of eigenvalues of ando, the real number defined as

1if 1 is multiple eigenvalue of A
09 =

max{RA, A\ € Sp(A), X # 1} if 1 is simple eigenvalue;

hypotheses o imply thatos < 1 in the second case. The urn is calladge when1/2 < o5 < 1.
Otherwise it is called small. A monogenic block of indicess calledprincipal block whenRA(J) = o9
andJ has maximal size among monogenic blocks that satisfy that property.

We denote by, the k-th vector of the canonical basis @f. For anys-uple of nonnegative integers
a=>Y7_, ardy € (Z>0)*, we use as usual the notations

u® = H up® and (o, \) = Z Ak

1<k<s 1<k<s

where)\;, denotes the eigenvalue associated with the linear fgrmand\ = (A1, ..., \s). Furthermore,
the symbola < 3 on s-uples of nonnegative integers will denote thegree-antialphabetical order

defined, ifla| = >, ar, bya = (a1,...,a5) < B = (b1, .. ,ﬁs)when(|a < |ﬁ> or (|a = |
and3r € {1,..., s} such thaty, < 8, anday = j3; for anyt > r).

As shown in Pouyanne (2005), a Jordan basis being chosen, there exists a uniq(@ brsig; . -
of polynomials ins variables such that B

1-Qp =1andQs, = u forallk € {1,...,s};

2-for all o, Q, — u® belongs taVect{Qg, 5 < «a, (B, A) # (o, \) };

3-forall o, (Qon) — (o, A)Qq belongs toVect{Qg, B < «, (8,A) = (o, \)}. The polynomialQ,,
is nameda-th reduced polynomial with regard to the choice of the Jordan bagig),. The reduced
polynomials can be recursively computed in any case; their unicity leads sometimes to a closed-form (for

some triangular urns for instance). In any case, for any nonnegative intetie reduced polynomial
Qps, is an eigenvector ob associated with the eigenvalpend have the following closed-form

Qps, =ur1(ur +1) ... (ug +p—1).

These notations being adopted, one can state the general result on the asymptotics of large urns that is
shown in Pouyanne (2005).
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Theorem 1 Take alarge Polya-Eggenberger urn. Fix a Jordan basis; )1<x<s Of linear forms of

the process andvy)1<k<s its dual basis of vectors d*; let .Jy, ..., J, be the principal blocks af
indices ofA andv + 1 the common size of thg.’s (r > 1 andv > 0).
1- (Convergence of principal coordinates of the procesdjor any k € {1,...,r}, the complext

—

valued processimi, s, (X,)/n k) converges to a random variabl&,, asn tends to infinity almos
surely and in any.?, p > 1.
2- (Random vector’s asymptotics)

1, a1 v
Xp = nvy = —log n1<§k:< IO W Vi g, + 0 (72 log” n) (4)

asn tends to infinity, the smadl being almost sure and ih? for everyp > 1.
3- (Joint moments of the limits) If one denotes bYQ,)ae(z.,)- the reduced polynomials of the

process relative to the Jordan basis; )1<x<s, all joint moments of the random variablgs,, . . ., W,
are given by: for alloy, ..., o, € Z>o,
['(1)
E Wi | = ——~ X
1<1_[k<r g F(Tl + <a’)\>)Qa( 1)

wherea = Zlgkgr Oékémin Jg -

2.2 Very first example
We give "slowly” one first example in dimensiofis

Example 1 Consider the 2-colour urn defined by an initial conditiénand the replacement matrix

15 5
R( 4 16)'

One hasS = 20 as balance and, with our notations = ( i’?j ‘142 ) ; the urn is large, its eigenvalues
beingl ando, = 11/20. One can choose; (z,y) = « + y andus(z,y) = —gx + %y as Jordan basis,

its dual basis being given by, = #(4/9,5/9) andvy = *(—1,1). The only principal block of indices is
{2} in this case. The theorem asserts that

1 n (4 -1
i (%= 5(5)) = ()

almost surely and ifL2!, whereW is a real-valued random variable. Computation of the first reduced
polynomials that provide moments Bf gives

2 121 11 __ 253 583 25,..2 40 16,2
Qo,2) = U5 + Te3U1 — TspU2 = 5217 T 510 T 517 — 512U T ;Y
3 121 11,2 1331 1573
Qo3) = uy + Fruru2 — gouz + Fiags U1 + 1350 U2s ®)
_ .4 121 2 11,.3 14641, .2 14641 16819, 2 2298637 4143403
Q(o,4) = U3 + 7 U1ty — 353 + Jrg U1 — Froos Y1U2 T eo0 Y2 + 1766400 %1 — 12636000 L2-
For example, if one begins the process with one ball of each caleuwith z; = z, = 55, then
EW = —L LU0 0038 py2 = B2 LA/ o777 pyys — — 183003 LU/10) 109,

180 T(13/20) ) 2025 T'(6/5) ! 7 12636000 T (7/4)
etc This is enough to show for instance that the distributiomlofs not normal (the first three moments

my, ma, mg of a normal distribution satisfy the relati@m?$ — 3myms + ms3 = 0).

3 Classification; generic examples

A Polya-Eggenberger urn will be calledal when every eigenvalue of associated with a principal block
is real. Otherwise, it will be calletinaginary. When all principal blocks of indices have sizethe urn
is calledprincipally semisimple. Otherwise, it is called non principally semisimple. The expression
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semisimple is taken from linear algebra: an endomorphism is called semisimple when it admits a basis of
eigenvectors over an extension of the ground field. The adverb principally refers to the restrictiom of
the sum of its characteristic spaces that correspond to principal blocks of indices.

As can be directly seen from Theorem 1, a large real urn have an almost sure limit after substraction of
the drift and suitable renormalization. On the contrary, an large imaginary urn gives rise to an oscillatory
almost sure random phenomenon. Some authors (see for example Chern and Hwang (2001)) pointed out
this fact claiming that no normalization that consists in dividing the differéfige nv, provides any limit
law. Principal semisimplicity leads to asymptotics in the powera-etale; non principal semisimplicity
requires the addition of entire powerslog n.

Theorem 1 leads to a classification of larg#yR-Eggenberger urns in five types depending on the form
of their asymptotics. We summarize this classification in the following table. Subsection 3.1 deals with
the particular case of so-called essentialpjyR urns. In Subsection 3.2, we give five examples related to
the classification. These examples have generic virtues. Only the closed-forms of reduced polynomials
that appear in some of these cases are due to the very particular forms of the replacement matrices and
cannot straightforwardly be generalized to any urn.

In the table, "pss" means principally semisimple.

Large urn Almost sure andL=! asymptotics Wi,...,W,
e S W et
Ko Wi W e
andRr?gtl pss 52{2 1_05”1]; oo V1 Vmax gy e Wotma g, JOir;'; r;/zfgents
Irgzgir;f;\;y Xnn—@mn = I PUDW 44 B SNIW 0 4 o(1) Joir;:c r;/zzents
| ottt = W Wit 0 Wi, o(1) | I RTINS

Note that, in the imaginary case, the computation of joint momeni%,dé leads in particular to the
computation of joint moments 6tW,.’s, SW}’s and| Wy |?'s too.

3.1 Essentially Polya urn

An urn will be calledessentially Blya when1 is multiple eigenvalue ofl, i.e. whenoy = 1. Letr > 2
be the multiplicity of1 as eigenvalue off. As shown in Gouet (1997) and Pouyanne (2005), the urn is
necessarily semisimple. Using the so-called graph ofefi® andwy's (or the graph of the replacement
matrix), one finds a basig:1, ..., u,) of linear forms fixed byA and a partitionly, ... . of {1,...s}
such that for anye € {1,...7}, up(w;) = 1if j € I andug(w;) = 0if j ¢ I. We denote by
(v1,...,v,) its dual basis oker(A — 1). For such abasi$;_, z, = >, _; us.
An adaptation of Theorem 1 presented in Pouyanne (2005) implies that there exist real random variables

W1, ..., W, such that

Xn

— — Wiy +...+ Wy,

n n—oo

almost surely and ih.=! where the random vectg#v, . ..
etersuy (X1),...,u-(X1), whose density on the simple¥; > 0,...
given by

, W,.) has Dirichlet distribution with param-
& > 0,3 & =1} of R"is

r up(X1)

— 1 .
(€1, &) = T )kl;[1 T(u(X1))
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3.2 Examples

We give a list of five matrice®;,, 2 < k£ < 6. For anyk, we consider thé-colour urn process defined by
an initial condition and its replacement mati, and deal with it in Examplé-.

400 0 0 40000 4000 0
1 3000 13000 1 3000
Rl 202 00]|,Re=|10300]|,Re=|0130 0|,
002 2 0 2.0 0 20 100 30
200 0 2 000 2 2 0001 3 ©)

6 200 0 6 100 1

06 20 0 06 1 0 1

Rs=| 206 00 ]|,Re=| 106 01

3005 0 0116 0

400 0 4 1001 6

Example 2 Consider th&-colour urn defined by an initial condition and its replacement matsixEven

if A is not semisimple, the urn is real and principally semisimple, and admits a unique principal block of
indices (of sizel). We choosei; = x5. Then, for any choice of a Jordan basis, . .., us), one has

v1 =%(1,0,0,0,0) andvy, =*(—1,1,0,0,0). Because of the particular triangular form®f (zeros under

the entry3), one can in this case derive explicitely the reduced polynomials that intervene in the moments
of W from their propertiesQo ,.0,0,0 = z2(x2 + 3/4) ... (z2 + 3(p — 1)/4) for any positive integep.

The almost sure asymptotics is given by

1
W(X" — nvl)n:;ong

where the moment generating functionl@fis, if one adopts the notation = us(X1),

(3/4)P (1) ['(472/3 + p)
p! T(m +3p/4) T(472/3)

E(expzW) = Z

p=>0

2P @)

Example 3 Consider thé-colour urn defined by an initial condition and its replacement matgxThe
urn, real and principally semisimple, admits two principal blocks of indices (ofi$i2&/e choose, = x4
andus = z3. Then, for any choice of a Jordan basis, . .., us), one hasy; = (1,0,0,0,0), vo =
t(-1,1,0,0,0) andvs = *(—1,0,1,0,0). As in the preceding example, because of the particular form
of the matrix, the reduced polynomials of interest can be compa#gd; 0.0 = z2(x2 +3/4) ... (2 +
3(p—1)/4) x x3(x3+3/4) ... (x5 + 3(¢ — 1)/4) for any nonnegative integersandq. The almost sure
asymptotics is given by

1

W(Xn — nvy) — Wiy + Waus,

where the joint moments of the real random variatbigsandW, are

F(Tl) F(4T2/3 +p1) F(4T5/3+p2)

W = B S 3oy ¥ p) /D) Tmf3)  Tdrs)3)

for any nonnegative integers andp,; in this formula,» = u2(X;) andrs = us(Xy).

Example 4 Consider thé-colour urn defined by an initial condition and its replacement magtrixreal
and not principally semisimple. The eigenvaljel of A has multiplicity4, and A admits two principal
blocks, of size. A natural Jordan basis is given by = x3, uz = 425, u4s = x5 andus = 4x4. With this
choice, one has; =*(1,0,0,0,0), v3 = 1%(—1,1,0,0,0) andvs = +*(—1,0,0,1,0). Suitable reduced
polynomials admit a closed-form as in the preceding examples; the asymptotics is given by

1

m(xn — nvl)n:oW]_v?, + W2U5

where the joint moments of the real random variabigsandW, are given by (8).
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Example 5 Consider theés-colour urn defined by an initial condition and its replacement mdtgxThe
matrix A is semisimple, and its eigenvalues aré/8, 5/8 + i1/3/8 and1/2 so that the urn is imaginary

and principally semisimple. There are three principal blocks, of size one. A Jordan basis can be chosen
so thatus = x4, us = za1 — 2 + zZxs + (1 + Z)z4 + 225, anduy = uz Wherez = exp(in/3). Then

v = 3$(1,1,1,0,0), v2 = +%(=1,2,-4,3,0), v3 = $'(z,1,2,0,0) andvy, = v3. The almost sure
asymptotics is then given by

#(X" —nvy) = Wivg + 2R (ei k’g”\/g/gngg) +o(1).

Because of the zeros on the fourth columnigf the reduced polynomials associated with the random
variableW; are computable as already done in Example 2. Computation of the very first other reduced
polynomials prOVider)l’Lo,o = Ugu3 + %(3 — i\/g)UQ, Q070)27070 = u§ + (3 + Z\/§/4)’U,5 + 5*12(—25 +
2iv/3)ua+ = (66—19iv/3)u2, Qo,0,1,1,0 = ustia+ Tus+Lus+ Tuy. To avoid too much heaviness, we just
give examples of joint moments when the initial composition of the urn consists in one ball of each colour

(all of them being computed from the above reduced polynomid$y; = 21;(51//82) ~ 0.198, EWy =
%(3%) ~ 0.719—0.142i, E|W,|? ~ 2.544, E(RW2)? = LE|W,|? + JR(EW2) ~ 1.630,
E(SW2)? = TE[W,|? — JR(EWE) ~ 0.914, etc One can for example, with the help of symbolic
computation (I did it with Maple) comput@ ¢ 2 2.0 and show that?| W5 |* ~ 12.957.

Example 6 Consider the5-colour urn defined by an initial condition and its replacement mafix
The double eigenvalues of are A and\, where\ = (11 + i1/3)/16, so that the urn is imaginary. It
is not principally semisimple, having two principal blocks, of size two.(df, ..., us) is any Jordan
basis with eigenformss = 21 + 23 + 3 — 2224 — (1 + Z)x5 anduy = us (Samez as before), then
v1 = 35°(11,9,8,7,14), v3 = "’%\G/gt(—z, —7%,1,0,0) andvs = v3. The almost sure asymptotics is then
given by

1

W(Xn —nvy) = 2N (Tli\/g/IGWl’Ug) +o(1).

The expectation ofi; is EW; = F(FT(ITA) u2(X1); when the initial composition of the urn consists in one

_ I'(5/8) = ; 2 ;
ball of each colour, the®W; = 66 2 "~ 0.103 — 0.173i, E|W1|* ~ —1.394 — 2.468i,
EW?Z ~ 0.453 — 0.2194, etc

4 Miscellaneous examples

4.1 General two-dimensional large urn

The general two-dimensionalbBa-Eggenberger urn process with baladckas a replacement matrix

R = 1 ; “ 1 i b ) wherea andb are nonnegative rational (real) numbers. The eigenvaluet are
andl —a — b; the urniis large if and only i& + b < 1/2 and is always real and semisimpleal= b = 0,

the almost sure limit ok, /n has a Dirichlet (or beta) distribution as already stated in Subsection 3.1; this
case corresponds to the origindllya urn (Flya (1930)). When the urn is not principallyp®a, one can

compute the general form of first moments of the renormalized process’s limit.

Theorem 2 Assume that: and b are two nonnegative real numbers such thak a + b < 1/2. Let
(X,)n be the large Blya-Eggenberger urn process defined by the above replacement rRadirix the
initial compositionX; = (x1,y1). We denotey = —5/(b,a), va = 5'(1,—1), 71 = =1 + y1 and
79 = ax1 — by;. Then, almost surely and P for everyp > 1,

1
(Xn —nvy) — Wy

nl-a—-b n—00
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whereW is a real random variable that satisfies

T T ab(l—a—b)?
EW = F(nl;-(li)a—b) T2, EW? = F(rl+l;(—12)¢z—2b) (7—22 +(a—0)(1—a—"0b)m + 1(_12a—2b) Tl)

T a —a—b)?
EW3 = r(TﬁI}LEfa — (Tg + 20 at) i +3(a — b)(1 — a — b)73

_ (1—a—b)?(4a®—3a%b—3ab>+4b> —2a>+2ab—2b%) 4ab(a—b)(1—a—b)3
1—2a—2b T2 + 2—3a—3b -

©)

PROOF The given basis is the dual of a Jordan oag(¢,y) = = + y as usualus(z,y) = ax — by).
Because of Theorem 1, one just has to compute the corresponding first three reduced polynomials (they
are given by the formulae; an incredule reader has just to verify that they are eigenvectors for the transition
operatord). O

This theorem gives a generic answer to a natural question of S. Janson: is the limitliawmafmal
(notations of Theorem 2)?

Corollary 3 The limit distribution {1") of a renormalized large two-dimensionablga-Eggenberger urn
is generically not normal.

PROOF. If a, b, 71, 7 are defined as above, the distributioéfis normal only if2( EW )3 —3(EW ) E(W?2)+
E(W3) = 0, because the first three moments of a normal law satisfy this relation. This is the equation of
an analytic hypersurface in the variablesb, 1, 2). O

4.2 Cyclic urns

If sis a positive integer, we call-colour cyclic urn any Blya-Eggenberger urn process defined by an
initial compositionX; and the replacement matrix

0 1 0
0 1
R= 0 . (10)
o
1 0

Its colours are elements @f/sZ, and a ball of colour. + 1 is added in the urn when a ball of colours
drawn. We will denote; = exp(2in/s).

Theorem 4 Let (X,,),, be ans-colour cyclic urn process; > 1.

1- X,,/n — v, almost surely as tends to infinity, where; = %t(l, 1,...,1) e R®.

2- If s < 5, the urn is small and X,, — nv1)/+/n converges in distribution to a centered Gaussian
vector with values in the hyperplade; + ... + =, = 0} of R®.

3-If s = 6, the urn is small and.X,, — nv; ) /+/nlogn converges in distribution to a centered Gaussian
vector with values in the hyperplade; + ... + z; = 0} of R®.

4- Suppose > 7. The urn is large{ X,, — nv;)/n°*(?7/) is bounded almost surely and i"* and
has the almost sure asymptotics

1 o
e _ — isin(2m/s)
ncos(2m/s) (X —nvp) =2R (n WUQ) +0(1)
wherev, = 11(1,e;%,e52,..., el=*) andW is a complex random variable; if one denotegz , . . ., ;) =
T1tesrot. .. +ei T g, o = ua(X1), ug(1,. .., 75) = 21+ 3220+ .—&—ef(sfl)xs andrs = us(X1),
the first moments di are EW = 1“(1;5113 72,

_ I'(m) e _ I(r
EW? = F(71(+1265) (7—22 + 2—eg T4) and E|W|2 - F(T1+2C0;227T/S)) <|T2‘2 o 172(:0;(2#/5) Tl) :

PrROOFE The urnis irreducible, imaginary and principally semisimple, the spectrumaaisisting in all
s-th roots of unity. Thes linear forms defined by, = Zz;é ¢k, for any s-th root of unity¢ constitute
a Jordan basis, the two eigenforms hawing= cos(27/s) as real part being,._, and its conjugate. Points
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2- and 3- are thus shown by Janson (2004). One just has to compute suitable reduced polynomials to
complete the whole proof. We omit this computation in the text because of its length. One can perform it
carefully with much patience or do it with the help of symbolic computation (I did both!). We just mention
here the expression @f(u¢, uc, . . . u¢, ) for any choice ofs-th roots of unity(y, (o, . . ., ¢, starting point
of the work.

Notations: if f is any functionC®* — C and o any permutation of1,...,s}, we denoteo.f :
(T1,...,m5) = f(25(1), - -, To(s)) (Qroup action on such functions)iab( f) the subgrougr € &, 7.f =
f}and

1
f=—"" SN of
S% | Stab(f)| C,;S

When f is any vector-valued function defined @7t and( any s-th root of unity, we denote, for any
z € C?,

Oe(f)(x) = CFap[fla+wi) — f(2)]
k=1

where as usuaby, is thek-th column-vector ofA = ‘R. Note that®; = ®, transition operator of the
cyclic urn. This notations being adopted, one showsdh@ifuc ) = @ (f)uer + ¢ fucer + P (f). In
particular,®¢(uc) = ('u¢er. This is enough to show by induction erthat, for any choice of-th roots
of unity (1, ..., ¢

.
Dol - tg,) =D Y Cree Crlley gy, - - U, -

k=1 sym

This formula leads to the computation of the reduced polynomials. For examplenti(; ares-th roots
of unity, if one denotes,. = 051 foranyk € {0,...,s — 1},

C1G2
= U U, U (o
Q5<1 ¢y SRS G4 G — GG C1¢2

(11)
this formula being valid as soon d@s # (» or (; # exp(£2im/6); if (and only if) this condition is not
satisfied, the above denominator vanishes@nd., 5., = uc, u¢, (butis not eigenvalue of the operatbr
any more). This formula is enough to compute the second order momefts of O

Remark 1 If the initial composition of the urn consists in only one ball of any colour, theW|? =
(14+1/(2cos(2m/s) —1))/T'(1 4+ 2cos(2w/s)) tends tol ass tends to infinity. If the initial composition
consists in one ball of each colour, thefiV |2 = s!/(2 cos(27/s) —1)/T'(s + 2 cos(27/s)) is equivalent
to 1/s ass tends to infinity.

Remark 2 (Variance of |[IW|?) The computation of the variance @f’|2 for large cyclic urns lets the
values = 12 appear as exceptional. Indeed, supposedhatr ands # 12, and denote = cos(27/s).
Then, if (for example) the initial composition of the urn consists in only one ball of any colour, then

1 8(8¢3 —20c? + ¢+ 2)

EW|* = [(4c2 — 1) (4c — 1)(4c — 5)(2¢ — 1)2

and if this initial composition consists in one ball of each colour, then

s! 2(16s¢3 + 8¢® — 20c? — 24s5¢? + 5sc + ¢ + 2)

EW|* = PR o(de — 1)(4c—5)(2c — 1)

Suppose now that= 12. Then the above formulae of are not valid any more; if the initial composition

. . 3 2 N
of the urn consists in only one ball of any colour, thBfiV [* = (2331;(1456655;‘;;?1; =20+ 03

and if this initial composition consists in one ball of each colour, ther |4 = f(‘l“jjl‘)?igfg(lfffir)‘é =
307 467
It 33 V3 _ _ _

The exceptional value = 12 can be pointed out for reduced polynomials of degree two that appear
in the computation in the fourth order momentsi@t formula (11) implies that)s, s, ., = |ue§|2 +
uy/(2cos(4n/s) — 1) if s # 12 and Qs,45,_, = |ue2|? if s = 12. We do not say more about the
computations that lead to these formulae.
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Remark 3 Some authors would talk about “phase change’sfer 7 because of the type of asymptotics

of the renormalized process. Some moments of ard2ihave an exceptional behaviour for= 12 as can

be seen in Remark 2 (for a moment of order four). This appears as a technical reason in the computation of
reduced polynomials, whose coefficients are fractions with cyclotomic factors at their denominators.
Computations of moments of higher orders give rise to similar phenomena for various exceptional values
of s. The natural question of the law &F (or of its real and imaginary parts, or even of its module’s
square) remains open.

4.3 m-ary search trees

An m-ary search tree can be seen astly®-Eggenberger irreducible, semisimple and imaginary urn
process withm — 1 colours andX; = (1,0,...,0) as initial composition (see Chauvin and Pouyanne
(2004) for the replacement matrix). It is well known that this urn is large if and only i 27 (see
Mahmoud (1992), Chern and Hwang (2001)). We assumeithat27.

Eigenvalues of4 are the roots of [, -, ,,,_;(z + k) — m!. For any\ € Sp(A) we denote

wN = J[ @+Mjand Hu(N)= > (k+MN)7"

1<j<k—1 1<k<m—1

We choose a Jordan basis, ) csp(4) and its dual basiévy ), derived from computations of the article
with B. Chauvin: forany\ € Sp(A), ux = 31 et g N2k andoy = g5 (1/52(A), -, 1/7m (V).

We denote by\; the non real eigenvalue of having the largest real part (namety) and a positive
imaginary part (named?). It follows from Chauvin and Pouyanne (2004) or from Theorem 1 that there
exists a complex random variabdlg such that

1 N\ /7
s (Xn —nvp) =28 (n’)‘Q sz) +o(1).
Theorem 5 With the conventiorff;gﬂ) = k,((_:rzk)k if 4 = —m — 1 (whenm is odd,—m — 1 is an

eigenvalue ofd), the random variablé? has the following first polynomial moment8W = 1/I'(1 +
)\2)1

B 1 1 1T +k)?2 T(u+1)
BV = R o) T T )2 (1 LD DI > vy T LG WE Rl e k))’

HESP(A)
1<k<m-—1
2| _ 1 1 1 [POe+k)|?2 T(u+1)
and B\W?| = rrmoyrarae (1 + D mpm G F(u+1+k)>'
HESP(A)
1<k<m-—1
(12)
PROOFE Letwy be thek-th column-vector ofA. Namely,w, = —kéx + (k + 1)dgr1 if & < m — 2
andw,,—1 = —(m — 1)d,,—1 + md;. One hasuy(wy) = %yk(/\) for any eigenvalue\ and for any

k e {1,...,m — 1}. This leads to the computation of the linear fofrwyu, ) — (A + p)ury,, firstin
thez; coordinates, then in the, ones for any eigenvaluesand.:

O(unty) — A+ puaty = 3300 @) (1)
( (13)
_ A s (M) vk (1)
=2 esp(a) | Z1<hem—1 W o (YA (5| W
This leads to the result, the coefficient«wf in the expansion of the second order reduced polynomials
corresponding to the indicesandy being the above coefficients in brackétdivided by A + p — v. O

One can compute these moments for various values bf 27. As example of application of this result,

if X ¥ denotes the number of nodes that contain one key after insertion @f the )-st key in anm-ary
search tree (see Chauvin and Pouyanne (2004)), then this random variable satisfies almost surely

2n
x©@) —
" 3H,,(1)

+n72p@ cos(NY logn + @) + o(n?)
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asn tends to infinity, where(® and«(?) are real random variables. We give numeric approximations of
o2, Hp,, (1) and E(p(?))? for some values ofn:

m= 27 28 29 30 40 50

oo ~ 0.517| 0.533] 0.549| 0.563| 0.662| 0.720
ﬁm 0.231] 0.228] 0.225| 0.223| 0.203| 0.191
E(p™®)2 ~ | 44.06| 43.32] 42.62| 41.96 | 36.95 | 33.66
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