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Abstract—Apache Cassandra is an open-source cloud storage
system that offers multiple types of operation-level consistency
including eventual consistency with multiple levels of guaran-
tees and strong consistency. It is being used by many data-
center applications (e.g., Facebook and AppScale). Most existing
research efforts have been dedicated to exploring trade-offs
such as: consistency vs. performance, consistency vs. latency
and consistency vs. monetary cost. In contrast, a little work
is focusing on the consistency vs. energy trade-off. As power
bills have become a substantial part of the monetary cost for
operating a data-center, this paper aims to provide a clearer
understanding of the interplay between consistency and energy
consumption. Accordingly, a series of experiments have been
conducted to explore the implication of different factors on
the energy consumption in Cassandra. Our experiments have
revealed a noticeable variation in the energy consumption de-
pending on the consistency level. Furthermore, for a given
consistency level, the energy consumption of Cassandra varies
with the access pattern and the load exhibited by the application.
This further analysis indicates that the uneven distribution
of the load amongst different nodes also impacts the energy
consumption in Cassandra. Finally, we experimentally compare
the impact of four storage configuration and data partitioning
policies on the energy consumption in Cassandra: interestingly,
we achieve 23% energy saving when assigning 50% of the nodes
to the hot pool for the applications with moderate ratio of reads
and writes, while applying eventual (quorum) consistency. This
study points to opportunities for future research on consistency-
energy trade-offs and offers useful insight into designing energy-
efficient techniques for cloud storage systems.

Index Terms—Cloud storage; replications; Cassandra; consis-
tency; energy; Hot-N-Cold;

I. INTRODUCTION

To meet the ever-growing user needs, large cloud providers
have equipped their infrastructure with millions of servers
distributed on multiple physically separate data-centers. This
results in a tremendous increase in the energy consumed to
operate these data-centers (i.e., electricity used for operating
and cooling them) and ends up with high money bills in the
order of millions of dollars (e.g., the annual electricity usage
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and bill of Google are over 1,120 GWh and $67 M, and they
are over 600 GWh and $36 M for Microsoft [18]). As the
cost is still increasing as both prices of energy and scale of
data centers are on the rise (e.g., Hamilton [10] estimated that,
in 2008, money spent on power consumption of servers and
cooling units had exceeded 40 percent of total cost for data
centers, which reached more than 1 million per month for a
single data center.), many work have been proposed to reduce
the energy consumption in the cloud through the Dynamic
Voltage Frequency Scaling (DVFS) support in hardware [11],
virtualization [22], or exploiting green energy [9].

Meanwhile, we have entered the era of Big Data, where
the size of data generated by digital media, social networks
and scientific instruments is increasing at an extreme rate.
With data growing rapidly and applications becoming more
data-intensive, many organizations have moved their data to
the cloud, aiming to provide cost-efficient, scalable, reliable
and highly available services through replicating their data
across geographically diverse data-centers and direct users to
the closest or least loaded site. A particularly challenging issue
that arises in the context of storage systems with distributed
data replication is how to ensure a consistent state of all the
replicas.

As strong consistency by the mean of synchronous repli-
cation may limit the performance of some cloud applications,
relaxed consistency models (e.g., weak, eventual, casual, etc)
therefore have been introduced to improve the performance
while guaranteeing the consistency requirement of the specific
application. Furthermore, given that cloud applications are
significantly varying in their consistency requirements (e.g.,
an e-shop requires strong consistency while social applications
tolerate retrieving not up-to-date data), many cloud storage
systems have adopted flexible (e.g., configurable) consistency
models: giving the users the freedom to select the consistency
level according to their application requirement. Cassandra
is an open-source cloud storage system that offers multiple
types of consistency per-operation including multiple levels
of eventual consistency [6, 20] and strong consistency. It is



being used by many data-center applications (e.g., Facebook
(Instagram) [3] and AppScale [2]). Many research efforts
have been dedicated to exploring and improving consistency-
performance, consistency-latency and consistency-monetary
cost trade-offs in Cassandra storage system [8, 16]. In contrast,
little work is focusing on consistency-energy trade-off.

As power bills have become a substantial part of the
monetary cost for operating a data-center, this paper aims
to provide a clearer understanding of the interplay between
consistency and energy consumption and offers useful insight
into designing energy-efficient techniques for the Cassandra
cloud storage system. To the best of our knowledge, this
is the first study on consistency-energy trade-off in storage
systems. Accordingly, a series of experiments have been con-
ducted to explore the implication of different factors including
the selected consistency level, the access pattern, and the
load of the running applications on the energy-consumption.
We do so through deploying Cassandra on 40-node on the
Grid’5000 platform [12], powered by three power distribution
units (PDUs). Each node is mapped to an outlet, thus we
can export fine-grained power monitoring. Our experiments
have revealed that the energy consumption varies not only
according to the selected consistency level but also according
to the access pattern and load exhibited by the application.
Moreover, we observe that this variation is contributed to by
the obtained throughput of the applications and also by the
uneven distribution of the loads amongst different nodes in
the Cassandra system.

The primary contributions of this paper are as follows:
1) A study of the energy consumption of cloud appli-

cations in Cassandra cloud storage systems. We find
that variation in energy consumption cloud applications
appears when different consistency settings are applied.
Moreover, within the same consistency level, there is
a noticeable variation in the energy consumption when
varying the service load and the access pattern of the
running applications.

2) A micro-analysis to explain this variation and its cause.
We show that the total energy consumption of Cassan-
dra cluster when adopting the same consistency level
strongly depends on the running applications. More
importantly, we observe a high variation in the load
amongst the different storage nodes. This variation how-
ever increases when degrading the consistency level
and therefore results in high variation in the energy
consumption.

3) Hot-N-Cold. We investigate the impact of storage config-
uration and data partitioning on energy consumption and
performance of cloud applications in Cassandra cloud
storage systems. We show that by separating the cluster
into Hot and Cold pools (i.e., the hot pool has larger data
range and therefore hosts more data and is highly active,
the cold pool however hosts less data and therefore is not
highly active), we can reduce the energy consumption by
up to 23%, for the quorum level, without any adversary
impacts on the desired consistency.

It is important to note that the work we present here neither
is limited to the Cassandra nor specific to the key/value store
and can be applied to different cloud storage systems that are
featured with flexible consistency rules.
Paper Organization. The rest of this paper is organized
as follows: Section 2 briefly presents Cassandra consistency
management, and discusses the related work. Section 3 de-
scribes the overview of our methodologies, followed by the
experimental results in Section 4. Section 5 presents and
experimentally discusses the impacts of partitioning Cassandra
cloud storage systems into hot and cold pools on energy
consumption. Finally, we conclude the paper and propose our
future work in section 6.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce consistency manage-
ment in Cassandra cloud storage system and then discuss
the prior research work on consistency/energy management
in cloud storage systems.

A. Consistency management in Cassandra
The way consistency is handled has a big impact on

performance. Traditional synchronous replication (strong con-
sistency) dictates that an update must be propagated to all
the replicas before returning a success. In contrast, eventual
consistency by means of asynchronous quorum replication
[6, 17, 19] propagates data lazily to other replicas. Here the
consistency level is, commonly, chosen on a per-operation
basis and is represented by the number of replicas in the
quorum (a subset of all the replicas). A quorum is computed
as: ⌊(replication factor/2) + 1⌋. Data accesses and updates
are performed to all replicas in the quorum. Thus, using this
level for both read and write operations guarantees that the
intersection of replicas involved in both operations contains at
least one replica with the last update. A partial quorum has
a smaller subset of replicas, hence returning the most recent
data when read is issued, is not guaranteed.

In the Cassandra storage system, several consistency lev-
els [23] are proposed per-operation. A write of consistency
level one implies that data has to be written to the commit
log and memory table of at least one replica before returning
a success. Moreover, a read operation with consistency level
ALL (strong consistency) implies that the read operation must
wait for all the replicas to reply with consistent data in order to
return the data to the client. However, this will introduce higher
latency if some replicas are inconsistent with the most current
version. In contrast, a read consistency level of quorum, 2
of the 3 replicas are contacted to fulfill the read request and
the replica with the most recent version would return the
requested data. In the background, a read repair will be issued
to the third replica and will check for consistency with the first
two. If inconsistency occurs, an asynchronous process will be
launched to repair the stale nodes at a latter time.

B. Related Work
While there have been many research work in addressing

consistency management and energy consumption in cloud



storage systems, but none of them has addressed consistency
and energy as a whole.
Consistency management in cloud storage systems: Mul-
tiple analysis studies related to consistency were conducted
over the years [5, 21]. Wada et al. [21] investigate the level
of consistency provided by the commercial cloud storage plat-
forms. Accordingly, they analyze the correlation between the
consistency provided and both the performance and the cost.
In [5], the authors study past workload executions in order
to verify consistency properties and the level of guarantees
provided by the underlying key/value store.

Recently few studies have been concentrated on improving
the monetary cost of consistency in the cloud [8, 16]. The goal
of these studies is to minimize the monetary cost of leased
resources in the cloud through selecting the most appropriate
consistency level that copes with both the dynamic state of the
system and the change of service load. In contrast, we focus on
the energy consumption: we aim to provide an in-depth study
of energy-consistency trade-offs in cloud storage system.
Energy management in cloud storage systems: Energy
consumption in the datacenter is an issue of extremely high
importance. In this context, few approaches that attempt to
reduce energy consumption for storage systems (underlying
file systems for Hadoop [1, 13] mostly) were proposed [4, 15].
GreenHDFS [15] is an energy-conserving variant of HDFS.
GreenHDFS divides the Hadoop cluster into Hot and Cold
zones where a zone temperature is defined by its power usage
as well as the performance requirements. Within GreenHDFS,
data is classified in order to be placed in either zone. The
classification’s aim is to enlarge the idle time of servers within
the cold zones by assigning to them the least solicited data.
In contrast to related work, we introduce a first study that
analyzes and shows how consistency can affect the energy
consumption of the storage system.

III. METHODOLOGY OVERVIEW

The experimental investigation conducted in this paper
focuses on exploring the implications of consistency manage-
ment on the energy consumption of Cassandra under different
workloads. We conducted a series of experiments in order to
assess the impact of various consistency levels on both energy
consumption and application performance.

A. Platform

The experiments were carried out on the Grid’5000 [12]
testbed. The Grid’5000 project provides the research com-
munity with a highly-configurable infrastructure that enables
users to perform experiments at large scales. The platform is
spread over 10 geographical sites: 9 sites are located on French
territory and 1 in Luxembourg. For our experiments, we
employed nodes belonging to the Nancy site of the Grid’5000.
These nodes are outfitted with a 4-core Intel 2.53 GHz CPU
and 16 GB of RAM. Intra-cluster communication is done
through a 1 Gbps Ethernet network. It is worth mentioning
that only 40 nodes of the Nancy site are equipped with power
monitoring hardware consisting of 2 Power Distribution Units

(PDUs), each hosting 20 outlets. Since each node is mapped
to a specific outlet, we are able to acquire coarse and fine-
grained power monitoring information using the Simple Net-
work Management Protocol (SNMP). It is important to state
that Grid’5000 allows us to create an isolated environment
in order to have full control over the experiments and the
obtained results.

B. Benchmarks

We aim at a micro benchmark representing typical work-
loads in current services hosted in clouds. Based on case stud-
ies, we have selected the Yahoo! Cloud Serving Benchmark
(YCSB) framework [24]. YCSB is used to benchmark Yahoo!
cloud storage system “PNUTS”. It is extended to be used
with a variety of open-source data stores such as Amazon
mongoDB, Hadoop HBase, and Cassandra. YCSB provides
the features of a real cloud serving environment such as scale-
out, elasticity, and high availability. For this purpose, several
workloads have already been proposed in order to apply a
heavy read load, heavy update load, and read latest load,
among other workloads. Also, the benchmark is designed to
make the integration of new workloads very easy.

We use YCSB-0.1.4 and we run three types of workloads
that mimic real-life workloads. In particular,

• Heavy Reads (e.g., photo tagging). By setting the
reads/updates ratio to 20/80%.

• Heavy Updates (e.g., user’s bids at last minutes
sell/auction). By setting the reads/updates ratio to
80/20%.

• Moderate Reads/Updates (e.g., session store recording
recent actions). By setting the reads/updates ratio to
60/40%.

Furthermore, to assemble the variation in service loads (i.e.,
diurnal and monthly loads), we also vary the number of threads
(i.e., concurrent clients accessing the system) from 20 to 100
threads.

C. Cassandra deployment

On the testbed described in Section III-A, we configured
and deployed a Cassandra cluster — using 39 nodes on
Nancy site — using the 1.1.4 Cassandra stable version. The
replication factor was set to 5. Since we are exploring the
energy-consumption within a single data-center, our replica-
tion strategy uses SimpleStrategy to enforce replication within
one data-center.

Prior to running the benchmarks, we have inserted 2 mil-
lions 1KB records which represent totally 2GB of data into
Cassandra. Each node will have 250MB of inserted data after
replication. Each workload runs with 20 million operations on
these nodes. We run each benchmark under three consistency
levels: One, Quorum and All.

D. Metrics

In addition to the energy monitoring tools, described in
section III-A, we gathered information about resource metrics
related to the CPU usage which is a crucial component for
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Fig. 1. Energy vs completion time with different consistency levels: We
run an application with moderate read/update ratio and 70 concurrent users.

many applications. These statistics are all gathered using
Dstat. Therefore, minimizing the effects of the monitoring
system on our resource measurements.

In each run we monitor the CPU usage for each node per
second and we also measure the energy consumption with a
resolution of one second.

IV. EXPERIMENTS RESULTS

The goal of our experiments is to measure the variance
in energy-consumption when applying different consistency
levels and to analyze the impact they may have on different
applications. With this aim, we monitor the metrics described
in Section III-D (i.e., the CPU usage) when applying eventual
consistency with different applications (i.e., we covered 9
scenarios where applications differ in their access pattern and
load as discussed in section III-B).

A. Consistency vs Energy

To give a general idea about the impacts of consistency
management on the energy consumption of an application,
we run an application with moderate read/update ratio and 70
concurrent users. The results of energy consumption for the
three consistency levels are shown in Figure 1. These results
show that the energy consumption for the three consistency
levels (i.e., One, Quorum, and All) varies considerably.

As shown in Figure 1, the total energy consumption de-
creases when degrading the consistency level: the energy
consumption reduces from 3.5× 106 — when the consistency
level is set to All — to 1.32×106 when the consistency level is
One (i.e., weak consistency reduces the energy consumption
by almost 62%). This result was expected as a lower con-
sistency level involves fewer replicas in the operations, and
thus maintaining low latency, less I/O requests to the storage
devices, and less network traffic in general (the run-time of
the application varies from 491 to 1272 seconds according the
consistency level). This energy reduction comes at the cost of
a significant increase in the stale reads rate: 43% of the reads
are stale reads — only 57% of the reads are fresh reads —
when the consistency level is set to One. The stale read rate
is an estimation metric proposed in our previous work [7].
This metric relies on the read rate, write rate in the storage
cluster and the network state in order to perform probabilistic
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Fig. 2. Energy consumption when applying eventual consistency with
diverse applications

computation as to provide an estimation of potential stale reads
rate.

To sum up, the total energy consumption of Cassan-
dra cluster when running the same application strongly
depends on the consistency level adopted: stronger con-
sistency has higher energy consumption but higher rate
of fresh reads and vice versa.

B. Energy consumption for diverse applications with Eventual
consistency

Figure 2 depicts the energy consumption of Cassandra
cluster for the six applications with eventual consistency
(Quorum level). We can observe that in the case of Heavy
updates workload Cassandra cluster consumes the least energy,
meanwhile the highest consumption of Cassandra cluster is ob-
served for Moderate Reads/Updates workload, exceeding that
for the Heavy Reads workload. This results can be explained
due to internal mechanisms of the Cassandra storage system:
Cassandra, much like many NoSQL data stores, is optimized
for write throughput. This is mainly because write operations
are considered as extremely important and should always be
available at a low latency. Therefore, write latency within
Cassandra is very small since a write success is issued when
data is written to the log file and the memory (not the disk).
In this context, the small consumption of the Heavy updates
workload is due to writes small latency. Write latency is even
smaller than the read latency. Data in Cassandra is written
to memtables in memory and flushed later to sstables that
are written sequentially to disks. The sstables might however
contain data rows that diverge overtime. In order to handle
this issue, Cassandra implements a Compaction process in the
background to merge sstables. This in turn, introduces extra
latency when fetching data for read operations and thus ex-
plains why Moderate Reads/Updates workload consumes more
energy. In the worst case scenario, a Moderate Reads/Updates
workload results in a more frequent compaction, because
of the high number of update operations, and therefore it
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Fig. 3. Minimum, Average, and Maximum usage of Power and CPU
usage of the storage nodes

further increases the read latency in comparison to the Heavy
Reads workload. When the updates number is high more data
is written to the sstables that grow high very fast at high
probability of diverging rows (always because of potential
updates to the same rows) thus increasing the frequency of the
compaction operation that affect the read operations (which are
far more numerous compared to the Heavy updates workload).

On the other hand, when the number of concurrent clients is
small, the throughput in terms of served operations per second
is small and therefore the run-time of application is long and
the energy consumption is high.

To sum up, the total energy consumption of Cassan-
dra cluster when adopting the same consistency level
strongly depends on the running applications: applica-
tions with the same access pattern (i.e., either heavy up-
dates or heavy reads) have lower latency and higher ob-
served throughput and therefore lower energy consump-
tion — better for write dominant workloads — however
when the access pattern of the application is fluctuating
between Reads and Updates, the latency grows and the
energy consumption increases.

C. Energy consumption vs Uneven distribution with different
consistency level

To further understand these results, we have compared the
energy consumption of each node with Cassandra cluster.
Here we run the same application Moderate Reads/Updates
workload with 70 concurrent clients. Surprisingly, as shown
in Figure 3, our results indicate that the average power usage
(the average of power usage of all nodes at all time periods)
differs slightly between the consistency levels. However, the
gap between the max value and the min value is relatively
large, and largest with the One level. This is an indicator
of a potential variation of energy usage between nodes. The
average of CPU usage on the other hand, is higher with the
stronger consistency levels. This is mainly because CPUs are
more loaded since more replicas (and thus nodes) are involved
in data access operations. Moreover, there exists a huge gap
between the max usage and the min usage, in particular for the
One level where the min usage is roughly 8% (indicating that
the node is almost idle) and the max value is approximately
64%. This gap is higher with CPU usage than the power usage

Fig. 4. Data distribution for hot/cold Pools: hot nodes are exclusively
responsible for handling client requests and acting as coordinators for user
queries; every hot node is assigned a data range two times larger than the
data range of a cold node.

because the latter has a steady consumption portion of roughly
44 Watt (even at the idle time).

In summary, we observe a high variation in the load
amongst the different storage nodes. This variation how-
ever increases when degrading the consistency level and
therefore results in high variation in the energy consump-
tion).

V. HOT-N-COLD

Our observations about the bias in resource and power
usage in the storage cluster, in particular with low consistency
levels, have led us to consider the investigation of the im-
pact of storage configuration and data partitioning on energy
consumption. In this section, we propose the reconfiguration
of the storage cluster and conduct a series of experiments to
demonstrate the impact on energy consumption with strong
and eventual consistency.

A. Reconfiguration Approach

The results presented in the previous section show a vari-
ation in CPU usage and power usage between the different
nodes of the storage cluster, in particular with low consistency
levels. As previously explained, the issue is caused by consid-
ering all the nodes in the cluster as equals while not all of them
are equally involved in data access operations. This results in
inactive or lightly–active nodes consuming much power. In
order to circumvent this situation, we propose an alternative
cluster configuration of the storage system in order to save
energy under certain scenarios. This configuration consists of
dividing the storage nodes into two pools: the hot pool and
the cold pool.

Although data is evenly distributed on nodes in the storage
ring, not all of them are accessed in the same frequency.
Moreover, with replication, applying a low level of consistency



when accessing data can highly contribute to the unbalancing
of the load on nodes. Low consistency levels involve only a
subset of replicas/nodes in operations which amplify the load-
unbalancing impact of having more frequently-accessed data
than other.

In Apache Cassandra, much as any consistent hashing
scheme [14], each node should be assigned an equal data
range based on a hashing function where data is partitioned
according to the row key. To achieve this, each node is given
a token that determines its position in the ring and its data
range. In our new configuration, as shown in Figure 4, we
generate new token for each node considering its nature: hot
or cold. If the node is hot then its token is two times larger
than a token of a cold node.
The hot pool. This pool includes the cluster nodes that are
most active and highly consuming. Nodes within the hot
pool are assigned with more responsibilities and larger data
ranges as shown in Figure 4. Data partitioning in this case
is reconfigured in order for hot nodes to be responsible of
larger number of keys, possibly double assuming a uniform
distribution of keys. In Cassandra, this is accomplished by
assigning larger tokens in the ring to these nodes. Moreover,
the hot nodes are exclusively responsible of handling client
requests and acting as coordinators for queries. Upon a request
arrival, a hot node will determine which node hosts data for
the requested key. Since larger data ranges are assigned to
hot nodes, the probability that the data–hosting node will fall
within the hot pool is high.
The cold pool. In contrast to the hot pool, the cold pool
includes nodes that are not / will not be highly active. These
nodes are thus given less tasks and put on a low consumption
mode (possibly using DVFS Dynamic Voltage and Frequency
Scaling [11] technique to lower the CPU frequency). There-
fore, data ranges assigned to the cold pool are smaller in order
to reduce their involvements in operations as shown in Fig-
ure 4. Nodes in this case, are involved in operations when data
fall in their (small) ranges, to respond to other replicas request
with strong consistency levels, and with internal mechanisms
of the storage system (Read Repair mechanism, and the Gossip
protocol for Cassandra). As a result, with eventual consistency,
the probability for a request to be served exclusively within
the hot pool is high, especially when data keys are created
carefully to insure uniform distribution of keys with tokens of
equal sizes.

This configuration of Hot and Cold pools should be dynamic
and adaptive. Cold nodes could join the hot pool during peak
load times and hot nodes could join the cold pool during
the not–so–busy periods. Moreover, the dynamic configuration
has to consider the mostly-applied consistency level in the
workload to adapt properly. The low levels introduce more
variation between the nodes than the strong ones and provide
better performance.
Reminder. However, the primary goal of this paper is to point
to opportunities for future research on consistency-energy
trade-offs and to offer useful insight into designing energy-
efficient techniques for the Cassandra cloud storage system. As

a first step towards energy-efficient consistency management
in the cloud, we empirically analyze the energy-consistency
trade-off of the Hot-N-Cold approach. Therefore, we keep
the plan of building an adaptive reconfiguration approach
that dynamically adapts the hot and the cold pool sizes to
efficiently serve data while reducing the energy consumption,
as a part of our future work.

B. Experimental Setup

In order to investigate the cluster reconfiguration and data
range skew impact on energy consumption, we have run a
moderate reads–updates workload (with a read/write ratio of
60/40) and 70 client threads. Moreover, we have used four
storage cluster configurations where every node in the hot pool
is assigned twice the size of data range assigned to a node in
the cold pool:

• Balanced (default). This is the native configuration with
one pool of nodes that share the same tasks and host the
same data size.

• Hot/cold. This configuration divides the nodes set into
two equal subsets one assigned to the hot pool and the
other to the cold pool.

• Mostly hot. 2/3 of nodes are assigned to the hot pool
within this configuration and only the remaining 1/3 of
nodes are assigned to the cold pool.

• Mostly cold. 2/3 of nodes belong to the cold pool while
only 1/3 of nodes belong to the hot pool.

All the nodes in both the hot pool and the cold pool have the
same hardware setup. As part of future experiments, we intend
to lower the CPU frequency of all the nodes in cold pool.

C. Hot-N-Cold: Impact on Energy Consumption with Eventual
Consistency

In this section, we discuss the impact of storage cluster
reconfiguration and data range assigning strategies when con-
sistency is eventual: the One consistency level and the Quorum
consistency level. Although Quorum consistency yields con-
sistent data to the user, a small subset of replicas can be in
an inconsistent state. Instead, their convergence to a consistent
state is eventual.
Energy Consumption and Power Usage Evaluation. Fig-
ures 5(a) and 5(b) show the overall energy consumption,
and the average power usage, respectively, of our applied
four configurations. Both the energy consumption and average
power usage are lowest when the hot and the cold pools are of
equal size (hot/cold configuration) with eventual consistency
(The One and the Quorum consistency levels). Moreover, both
the mostly hot and the mostly cold configurations consume less
energy than the balanced configuration. This clearly shows
that, for eventual consistency, a balanced configuration with
a balanced data distribution client requests is not the best
solution to reduce the energy consumption. Since only a subset
of replicas are involved in data access operations, some nodes
are more loaded than others. Thus, energy is wasted on lazy
nodes. The average power usage for the mostly hot config-
uration is higher than the balanced one because of the high
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Fig. 5. Energy consumption and average power usage of different configurations
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(c) Stale read rate of the One consistency
level

Fig. 6. Energy saving, performance gains, and stale read rate of eventual consistency levels with different configurations

number of nodes in the hot pool. However, the overall energy
consumption is smaller because of the performance gains (as
shown in Figure 6(b)) that result in a smaller execution time.
Moreover, the average power consumption for both the mostly
hot configuration and the mostly cold configuration is higher
than the average of hot/cold configuration, which explains, in
addition to the performance gains, why energy consumption
is lower with the latter.
Gain Analysis. In Figures 6(a), and 6(b), we show the energy
savings and the performance gains (improved throughput in
terms of served operations per second) respectively, compared
to the balanced configuration (for eventual consistency). The
configuration with equally–sized hot/cold pools achieves the
highest savings that reach up to 19% of what is already a low
consumption when the level of consistency is One, and up
to 23% for the Quorum level. For this type of the workload
applied, the configuration where most of the nodes belong to
the cold pool is the one with the lowest saving (8% for the
level One and only 3% for the level Quorum). Similarly, the
performance gains are highest with the equally divided pools
configuration and lowest with the mostly cold configuration.

Moreover, Figure 6(c) shows the stale reads rate of all the
configurations with the consistency level One. The stale read
rate is an estimation metric proposed in our previous work
[7]. Both energy savings of the mostly hot and the mostly
cold configurations come at the cost of adding a very small
portion of stale reads to the one of balanced configuration (4%
for the mostly hot and 3% of the mostly cold). Interestingly,

we observe that the hot/cold configuration exhibits the lowest
stale reads rate (41% vs. 43% for the balanced configuration)
with the level One. Therefore, and for this type of workloads,
the hot/cold configuration is the best choice for eventual
consistency providing the highest energy saving, the highest
performance, and the lowest stale reads rate.

From these results, we conclude that a self–adaptive
reconfiguration is necessary to reduce the energy con-
sumption related to storage. The self–adaptive approach
must consider the observed throughput of the storage
system and the most applied consistency level in the
workload. Accordingly, the sizes of the hot pool and the
cold pool should be computed.

VI. DISCUSSION AND FUTURE WORK

In the era of Big Data and with the continuous growth of the
datacenter scale, energy consumption has become a pressing
factor in recent years. Similarly, consistency management
has become of even higher importance for storage systems
that operate at massive scales. In this study, we have high-
lighted, for the first time, the impact of consistency on energy
consumption in the datacenter. Therefore, we have shown
by means of experimental evaluation how the choice of the
consistency level affects the energy consumption of the storage
cluster. We have demonstrated that the energy consumption is
much higher with strong consistency levels. In contrast, the
weakest consistency levels reduce (significantly) the energy



consumption but at the cost of high rates of inconsistency.
Quorum–based levels are middle ground consistency levels
that save a reasonable amount of energy without tolerating
stale reads. We conclude that, when update conflicts are
efficiently handled, the basic eventual consistency is the best
choice to save energy with just a small fraction of stale reads
under light accesses while quorum–based levels are a better
choice under heavy accesses. In addition, in our analysis,
we have demonstrated the presence of bias in the storage
cluster with eventual consistency levels. Thereafter, we have
introduced a cluster reconfiguration into hot and cold pools
as an adaptive solution to further save energy with eventual
consistency. Our experimental evaluation has shown that such
a solution leads to energy–saving, enhanced performance, and
reduced stale reads rate.

In considering future work, we plan to design a self-adaptive
reconfiguration of Cassandra storage system. The main goal
of this approach is to minimize the energy consumption for
the runtime workload by automatically resizing the hot and
the cold pools of nodes. The proposed approach must monitor
the data access to keep track of peak load times as well as
compute the read/write ratio. In addition, it must monitor
the used consistency levels in the workload. Consequently,
all these data are processed in order to determine the best
configuration that achieves the adequate performance while
reducing the energy consumption. Thereafter, it dynamically
moves nodes from the hot pool to the cold pool and vice versa
according to the needs.
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