T. Senior and J. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Electrical Engineers, 1995.

F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, 1998.
DOI : 10.1007/b98828

S. Yuferev and N. Ida, Surface Impedance Boundary Conditions: A Comprehensive Approach, 2010.
DOI : 10.1201/9781420044904

D. Givoli, I. Patlashenko, and J. B. Keller, High-order boundary conditions and finite elements for infinite domains, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1-2, pp.1-2, 1997.
DOI : 10.1016/S0045-7825(96)01150-4

K. Schmidt and C. Heier, An analysis of Feng???s and other symmetric local absorbing boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.1, pp.257-273, 2015.
DOI : 10.1051/m2an/2014029

V. Bonnaillie-noël, M. Dambrine, F. Hérau, and G. Vial, On Generalized Ventcel's Type Boundary Conditions for Laplace Operator in a Bounded Domain, SIAM Journal on Mathematical Analysis, vol.42, issue.2, pp.931-945, 2010.
DOI : 10.1137/090756521

M. Wang, C. Engström, K. Schmidt, and C. Hafner, On High-Order FEM Applied to Canonical Scattering Problems in Plasmonics, Journal of Computational and Theoretical Nanoscience, vol.8, issue.8, pp.1-9, 2011.
DOI : 10.1166/jctn.2011.1851

D. Givoli and J. B. Keller, Special finite elements for use with high-order boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.119, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0045-7825(94)90089-2

D. Givoli, High-Order Nonreflecting Boundary Conditions without High-Order Derivatives, Journal of Computational Physics, vol.170, issue.2, pp.849-870, 2001.
DOI : 10.1006/jcph.2001.6766

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion, vol.39, issue.4, pp.319-326, 2004.
DOI : 10.1016/j.wavemoti.2003.12.004

M. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin Finite Element Method for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2408-2431, 2006.
DOI : 10.1137/05063194X

URL : https://hal.archives-ouvertes.fr/hal-01443184

S. Brenner and L. Sung, C 0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains, Journal of Scientific Computing, vol.44, issue.1-3, pp.22-23, 2005.
DOI : 10.1007/s10915-004-4135-7

D. Givoli, Non-reflecting boundary conditions, Journal of Computational Physics, vol.94, issue.1, pp.1-29, 1991.
DOI : 10.1016/0021-9991(91)90135-8

T. Senior, Impedance boundary conditions for imperfectly conducting surfaces, Applied Scientific Research, Section B, vol.8, issue.1, pp.418-436, 1960.
DOI : 10.1007/BF02920074

S. Rytov, Calculation of skin effect by perturbation method, Zh. Exp. Teor. Fiz, vol.10, pp.180-189, 1940.

M. A. Leontovich, On approximate boundary conditions for electromagnetic fields on the surface of highly conducting bodies, in: Research in the Propagation of Radio Waves, Academy of Sciences of the USSR, pp.5-12, 1948.

H. Haddar, P. Joly, and H. Nguyen, GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING BY STRONGLY ABSORBING OBSTACLES: THE SCALAR CASE, Mathematical Models and Methods in Applied Sciences, vol.15, issue.08, pp.1273-1300, 2005.
DOI : 10.1142/S021820250500073X

URL : https://hal.archives-ouvertes.fr/hal-00743895

S. Yuferev and L. D. Rienzo, Surface Impedance Boundary Conditions in Terms of Various Formalisms, IEEE Transactions on Magnetics, vol.46, issue.9, pp.3617-3628, 2010.
DOI : 10.1109/TMAG.2010.2049363

B. Engquist and J. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers, 1993.

A. Bendali and K. Lemrabet, The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation, SIAM Journal on Applied Mathematics, vol.56, issue.6, pp.1664-1693, 1996.
DOI : 10.1137/S0036139995281822

C. Poignard, Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer, Mathematical Methods in the Applied Sciences, vol.34, issue.4, pp.443-479, 2008.
DOI : 10.1002/mma.923

URL : https://hal.archives-ouvertes.fr/inria-00334770

B. Aslanyürek, H. Haddar, and H. ?ahintürk, Generalized impedance boundary conditions for thin dielectric coatings with variable thickness, Wave Motion, vol.48, issue.7, pp.681-700, 2011.
DOI : 10.1016/j.wavemoti.2011.06.002

K. Schmidt and A. , Thöns-Zueva, Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases, 2014.

K. Schmidt and A. Chernov, A Unified Analysis of Transmission Conditions for Thin Conducting Sheets in the Time-Harmonic Eddy Current Model, SIAM Journal on Applied Mathematics, vol.73, issue.6, 1980.
DOI : 10.1137/120901398

B. Delourme, H. Haddar, and P. Joly, Approximate models for wave propagation across thin periodic interfaces, Journal de Math??matiques Pures et Appliqu??es, vol.98, issue.1, pp.28-71, 2012.
DOI : 10.1016/j.matpur.2012.01.003

URL : https://hal.archives-ouvertes.fr/hal-00741614

T. B. Senior, Generalized boundary and transition conditions and the question of uniqueness, Radio Science, vol.4, issue.B, pp.929-934, 1992.
DOI : 10.1029/92RS01426

M. F. Wheeler, An Elliptic Collocation-Finite Element Method with Interior Penalties, SIAM Journal on Numerical Analysis, vol.15, issue.1, pp.152-161, 1978.
DOI : 10.1137/0715010

B. Rivière, M. F. Wheeler, and V. Girault, A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.3, pp.902-931, 2001.
DOI : 10.1137/S003614290037174X

S. Sun and M. F. Wheeler, Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.195-219, 2005.
DOI : 10.1137/S003614290241708X

V. A. Kozlov, V. G. Maz-'ya, and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, 1997.
DOI : 10.1090/surv/052

C. Schwab, p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, 1998.

T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems, Wave Motion, vol.39, issue.4, pp.327-338, 2004.
DOI : 10.1016/j.wavemoti.2003.12.007

T. Hagstrom, A. Mar-or, and D. Givoli, High-order local absorbing conditions for the wave equation: Extensions and improvements, Journal of Computational Physics, vol.227, issue.6, pp.3322-3357, 2008.
DOI : 10.1016/j.jcp.2007.11.040

J. Nédélec, Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol.144, 2001.

A. Bayliss, M. Gunzburger, and E. , Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions, SIAM Journal on Applied Mathematics, vol.42, issue.2, pp.430-451, 1982.
DOI : 10.1137/0142032

X. Antoine, H. Barucq, and A. Bendali, Bayliss???Turkel-like Radiation Conditions on Surfaces of Arbitrary Shape, Journal of Mathematical Analysis and Applications, vol.229, issue.1, pp.184-211, 1999.
DOI : 10.1006/jmaa.1998.6153

H. Barucq, R. Djellouli, and A. , Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1810-1816, 2010.
DOI : 10.1016/j.cam.2009.08.032

URL : https://hal.archives-ouvertes.fr/inria-00338506

I. Patlashenko and D. Givoli, Non-Reflecting Finite Element Schemes for Three-Dimensional Acoustic Waves, Journal of Computational Acoustics, vol.05, issue.01, pp.95-115, 1997.
DOI : 10.1142/S0218396X97000071

I. Harari, Computational methods for problems of acoustics with particular reference to exterior domains, 1988.

T. Warburton and J. S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.25, pp.2765-2773, 2003.
DOI : 10.1016/S0045-7825(03)00294-9

J. M. Melenk and S. Sauter, Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation, SIAM Journal on Numerical Analysis, vol.49, issue.3, pp.1210-1243, 2011.
DOI : 10.1137/090776202

I. Babu?ka and J. Osborn, Eigenvalue problems, pp.641-787, 1991.
DOI : 10.1016/S1570-8659(05)80042-0

A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Mathematics of Computation, vol.28, issue.128, pp.959-962, 1974.
DOI : 10.1090/S0025-5718-1974-0373326-0

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 1994.

P. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 1978.

P. Frauenfelder and C. Lage, Concepts???An Object-Oriented Software Package for Partial Differential Equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.36, issue.5, pp.937-951, 2002.
DOI : 10.1051/m2an:2002036

K. Schmidt and P. Kauf, Computation of the band structure of two-dimensional photonic crystals with hp finite elements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.13-14, pp.1249-1259, 2009.
DOI : 10.1016/j.cma.2008.06.009

URL : https://hal.archives-ouvertes.fr/hal-00974812

A. L. Koh, A. I. Fernández-domínguez, D. W. Mccomb, S. A. Maier, and J. K. Yang, High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures, Nano Letters, vol.11, issue.3, pp.1323-1330, 2011.
DOI : 10.1021/nl104410t