T. Bending and D. Fon-der-flaass, Crooked functions, bent functions, and distance regular graphs, Electron, J.Comb, vol.5, issue.R34, p.14, 1998.

A. Canteaut, P. Charpin, and H. Dobbertin, Binary m-sequences with three-valued crosscorrelation: a proof of Welch's conjecture, IEEE Transactions on Information Theory, vol.46, issue.1, pp.4-8, 2000.
DOI : 10.1109/18.817504

C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Designs, Codes and Cryptography, vol.15, issue.2, pp.125-156, 1998.
DOI : 10.1023/A:1008344232130

F. Chabaud and S. Vaudenay, Links between differential and linear cryptanalysis, Advances in Cryptology , EUROCRYPT'94, pp.356-365, 1995.
DOI : 10.1007/BFb0053450

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Dobbertin, Almost perfectly nonlinear power functions on GF(2n): the Niho case, Information and Computation 151, pp.57-72, 1999.

H. Dobbertin, Almost perfect nonlinear power functions on GF(2/sup n/): the Welch case, IEEE Transactions on Information Theory, vol.45, issue.4, pp.1271-1275, 1999.
DOI : 10.1109/18.761283

H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF(2 n ): A New Case for n Divisible by 5, pp.113-121, 2001.
DOI : 10.1007/978-3-642-56755-1_11

R. A. Games, The geometry of quadrics and correlations of sequences (Corresp.), IEEE Transactions on Information Theory, vol.32, issue.3, pp.423-426, 1986.
DOI : 10.1109/TIT.1986.1057184

R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.), IEEE Transactions on Information Theory, vol.14, issue.1, pp.154-156, 1968.
DOI : 10.1109/TIT.1968.1054106

D. Hertel and A. Pott, A characterization of a class of maximum nonlinear functions

H. D. Hollmann and Q. Xing, A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences, Finite Fields Appl, pp.253-286, 2001.

T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes, Information and Control, vol.18, issue.4, pp.369-394, 1971.
DOI : 10.1016/S0019-9958(71)90473-6

G. M. Kyureghyan, Differentially affine maps,WCC2005, pp.296-305

K. Nyberg, Differentially uniform mappings for cryptography, Lecture Notes in Computer Science, vol.765, pp.55-64, 1994.
DOI : 10.1007/3-540-48285-7_6

E. R. Van-dam and D. Fon-der-flaass, Codes, graphs, and schemes from nonlinear functions, European Journal of Combinatorics, vol.24, issue.1, pp.85-9810, 2003.
DOI : 10.1016/S0195-6698(02)00116-6