Matroid matching with Dilworth truncation

Abstract : Let $H=(V,E)$ be a hypergraph and let $k≥ 1$ and$ l≥ 0$ be fixed integers. Let $\mathcal{M}$ be the matroid with ground-set $E s.t. a$ set $F⊆E$ is independent if and only if each $X⊆V$ with $k|X|-l≥ 0$ spans at most $k|X|-l$ hyperedges of $F$. We prove that if $H$ is dense enough, then $\mathcal{M}$ satisfies the double circuit property, thus the min-max formula of Dress and Lovász on the maximum matroid matching holds for $\mathcal{M}$ . Our result implies the Berge-Tutte formula on the maximum matching of graphs $(k=1, l=0)$, generalizes Lovász' graphic matroid (cycle matroid) matching formula to hypergraphs $(k=l=1)$ and gives a min-max formula for the maximum matroid matching in the 2-dimensional rigidity matroid $(k=2, l=3)$.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.175-180, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184349
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:36:44
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 10:57:49

Fichier

dmAE0135.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184349, version 1

Collections

Citation

Márton Makai. Matroid matching with Dilworth truncation. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.175-180, 2005, DMTCS Proceedings. 〈hal-01184349〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

131