A characterization of extremal graphs with no matching-cut

Abstract : A graph is called (matching-)immune if it has no edge cut that is also a matching. Farley and Proskurowski proved that for all immune graphs $G=(V,E)$, $|E|≥\lceil 3(|V|-1)/2\rceil$ , and constructed a large class of immune graphs that attain this lower bound for every value of $|V(G)|$, called $ABC$ graphs. They conjectured that every immune graph that attains this lower bound is an $ABC$ graph. We present a proof of this conjecture.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.135-138, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184354
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:37:02
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 10:58:45

Fichier

dmAE0127.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184354, version 1

Collections

Citation

Paul Bonsma. A characterization of extremal graphs with no matching-cut. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.135-138, 2005, DMTCS Proceedings. 〈hal-01184354〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

111