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K−
` -factors in graphs

Daniela Kühn1 and Deryk Osthus1

1School of Mathematics, Birmingham University, Edgbaston, Birmingham B15 2TT, UK

Let K−
` denote the graph obtained from K` by deleting one edge. We show that for every γ > 0 and every integer

` ≥ 4 there exists an integer n0 = n0(γ, `) such that every graph G whose order n ≥ n0 is divisible by ` and

whose minimum degree is at least
“

`2−3`+1
`(`−2)

+ γ
”

n contains a K−
` -factor, i.e. a collection of disjoint copies of K−

`

which covers all vertices of G. This is best possible up to the error term γn and yields an approximate solution to a
conjecture of Kawarabayashi.
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1 Introduction
Given two graphs H and G, an H-packing in G is a collection of vertex-disjoint copies of H in G. An
H-packing in G is called perfect if it covers all vertices of G. In this case, we also say that G contains
an H-factor. The aim now is to find natural conditions on G which guarantee the existence of a perfect
H-packing in G. For example, the famous theorem of Hajnal and Szemerédi [HS70] gives a best possible
condition on the minimum degree of G which ensures that G has a perfect K`-packing. More precisely, it
states that every graph G whose order n is divisible by ` and whose minimum degree is at least (1−1/`)n
contains a perfect K`-packing. (The case ` = 3 was proved earlier by Corrádi and Hajnal [CH63] and the
case ` = 2 follows immediately from Dirac’s theorem on Hamilton cycles.)

Alon and Yuster [AY96] proved an extension of this result to perfect packings of arbitrary graphs H .

Theorem 1 [Alon and Yuster [AY96]] For every graph H and every γ > 0 there exists an integer
n0 = n0(γ, H) such that every graph G whose order n ≥ n0 is divisible by |H| and whose minimum
degree is at least (1− 1/χ(H) + γ)n contains a perfect H-packing.

Alon and Yuster [AY96] observed that there are graphs H for which the error term γn cannot be omitted
completely, but conjectured that it could be replaced by a constant which depends only on H . This
conjecture was proved by Komlós, Sárközy and Szemerédi [KSS01].
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Thus one might think that just as in Turán theory – where instead of an H-packing one only asks
for a single copy of H – the chromatic number of H is the crucial parameter when one considers H-
packings. However, one indication that this is not the case is provided by the result of Komlós [Kom00],
which states that if one only requires an almost perfect H-packing (i.e. one which covers almost all of
the vertices of G), then the relevant parameter is the criticial chromatic number of H . Here the critical
chromatic number χcr(H) of a graph H is defined as (χ(H)−1)h/(h−σ(H)), where σ(H) denotes the
minimum size of the smallest colour class in a colouring of H with χ(H) colours and where h denotes
the order of H . Note that χcr(H) always satisfies χ(H)−1 < χcr(H) ≤ χ(H) and is closer to χ(H)−1
if σ(H) is comparatively small.

Theorem 2 [Komlós [Kom00]] For every graph H and every γ1 > 0 there exists an integer n1 =
n1(γ1,H) such that every graph G of order n ≥ n1 and minimum degree at least (1 − 1/χcr(H))n
contains an H-packing which covers all but at most γ1n vertices of G.

Up to the error term γ1n this is best possible for all graphs H . Komlós conjectured that the error term γ1n
could be replaced by a constant which depends only on H . This conjecture was proved by Shokoufandeh
and Zhao [SZ03]. As in the above conjecture of Alon and Yuster, there are graphs H for which the error
term cannot be omitted completely.

Komlós [Kom00] also observed that for every graph H the minimum degree required in Theorem 2 is
necessary to guarantee a perfect H-packing:

Proposition 3 For every graph H and every integer n that is divisible by |H| there exists a graph G of
order n and minimum degree d(1− 1/χcr(H))ne − 1 which does not contain a perfect H-packing.

Our main result shows that in the case when H = K−
` , the critical chromatic number is indeed the

parameter which governs the existence of perfect packings. (Recall that K−
` denotes the graph obtained

from K` by deleting one edge.)

Theorem 4 For every γ > 0 and every integer ` ≥ 4 there exists an integer n0 = n0(γ, `) such that every
graph G whose order n ≥ n0 is divisible by ` and whose minimum degree is at least(

1− 1
χcr(K−

` )
+ γ

)
n

contains a perfect K−
` -packing.

By Proposition 3, Theorem 4 is best possible up to the error term γn. Our proof of Theorem 4 shows
that the perfect K−

` -packing can be found in polynomial time. Moreover, note that 1 − 1/χcr(K−
` ) =

`2−3`+1
`(`−2) . Thus Theorem 4 gives an approximate solution to the following conjecture of Kawarabayashi (it

is approximate in the sense that we have the additional error term in the minimum degree condition and
require n to be large).

Conjecture 5 [Kawarabayashi [Kaw02]] Let ` ≥ 4 be an integer. Suppose that G is a graph whose
order n is divisible by ` and whose minimum degree at least

`2 − 3` + 1
`(`− 2)

n.

Then G contains a perfect K−
` -packing.
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If true, the conjecture would be best possible. The case ` = 4 of the conjecture (and thus of Theorem 4)
was proved by Kawarabayashi [Kaw02]. By a result of Enomoto, Kaneko and Tuza [EKT87], the conjec-
ture also holds for the case ` = 3 under the additional assumption that G is connected. (Note that K−

3 is
just a path on 3 vertices and that in this case the required minimum degree equals n/3.)

One question which is immediately raised by Theorem 4 is whether one can replace K−
` with an arbi-

trary graph H . In [KO] we characterize the non-bipartite graphs H for which this is the case and show that
for all other non-bipartite graphs as well as for all connected bipartite ones Theorem 1 is best possible up
to the term γn. This characterization depends on the sizes of the colour classes in the optimal colourings
of H .

Unlike the proof in [Kaw02], our argument is based on the the Regularity lemma of Szemerédi and the
Blow-up lemma of Komlós, Sárközy and Szemerédi [KSS97].

2 Sketch of the proof
In our sketch of the proof of Theorem 4 we assume that the reader is familiar with both the Regularity and
the Blow-up lemma. The strategy of the proof of Theorem 4 is as follows. We first apply the Regularity
lemma to our given graph G in order to obtain a reduced graph R. An application of Theorem 2 to R will
give us a K−

` -packing K which covers almost all of the vertices of R. We then enlarge the exceptional
set V0 by adding all the vertices of G that lie in clusters not covered by this K−

` -packing. Next, for each
exceptional vertex x ∈ V0 in turn, we choose a copy of K−

` in G which consists of x together with `− 1
vertices lying in some clusters. All these copies of K−

` will be disjoint for distinct exceptional vertices
x ∈ V0. We delete all the vertices in these copies from the clusters they belong to. One can show that we
can choose these K−

` in such a way that from each cluster only a small fraction of vertices will be deleted.
Our aim now is to apply the Blow-up lemma to each of the copies K ∈ K of K−

` in order to find a
K−

` -packing in G which covers all the vertices belonging to (the modified) clusters in K. (Then all these
K−

` -packings together with the copies of K−
` chosen so far for the exceptional vertices will form a perfect

K−
` -packing in G.) However, a necessary condition for this is that the complete (`− 1)-partite graph K∗

whose vertex classes are the clusters in K (where the two clusters which are not adjacent in K form one
vertex class together) contains a perfect K−

` -packing. It turns out that is the case if |K∗| is divisible by `
and if the largest vertex class of K∗ is a little less than twice as large as every other vertex class. We can
satisfy the first condition by deleting a few carefully chosen further copies of K−

` in G.
However, we cannot guarantee the second condition if we proceed as above. In fact, since we have

changed the sizes of the clusters when choosing the copies of K−
` for the exceptional vertices, the largest

vertex class of K∗ may now even be slightly more than twice as large as every other vertex class. In
order to overcome this problem, we proceed a little differently. Instead of choosing an almost perfect
K−

` -packing in R, we will choose an almost perfect packing with copies of some complete (`−1)-partite
graph F which has ` − 2 vertex classes of equal size s and one vertex class of size (2 − η)s (where s is
large and η is small). Moreover F will be chosen in such a way that it contains a perfect K−

` -packing.
Thus all these K−

` -packings together form an almost perfect K−
` -packing K in R, as we had before. We

now proceed similarly as described before, the only difference is that we aim to apply the Blow-up lemma
to each copy of F in R (and not to the copies of K−

` ). So consider one such copy F ′ and let F ∗ denote
the ‘blown-up’ copy of F ′. Thus F ∗ is a complete (` − 1)-partite graph whose ith vertex class is the
union of all the clusters in the ith vertex class of F ′. As before, we can achieve that |F ∗| is divisible by `.
However, this time we can also achieve that the largest vertex class of F ∗ is a little less than twice as large
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as every other vertex class. Indeed, this holds for the vertex classes of F ′ with some room to spare and
subsequently we only modified the cluster sizes by a comparatively small amount.
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editors, Combinatorial Theory and its Applications, volume 4 of Colloq. Math. Soc. J. Bolyai.
North-Holland, Amsterdam, 1970.

[Kaw02] K. Kawarabayashi. K−
4 -factors in a graph. J. Graph Theory, 39:111–128, 2002.
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