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Density of universal classes of series-parallel
graphs

Jaroslav Nešetřil1†and Yared Nigussie1‡

1 Department of Applied Mathematics
Institute for Theoretical Computer Science(ITI)
Charles University
Malostranské nám.25
11800 Praha 1 Czech Republic

A class of graphs C ordered by the homomorphism relation is universal if every countable partial order can be
embedded in C. It was shown in [1] that the class Ck of k-colorable graphs, for any fixed k ≥ 3, induces a universal
partial order. In [4], a surprisingly small subclass of C3 which is a proper subclass of K4-minor-free graphs (G/K4)
is shown to be universal. In another direction, a density result was given in [9], that for each rational number a/b ∈
[2, 8/3]∪ {3}, there is a K4-minor-free graph with circular chromatic number equal to a/b. In this note we show for
each rational number a/b within this interval the class Ka/b of K4-minor-free graphs with circular chromatic number
a/b is universal if and only if a/b 6= 2, 5/2 or 3. This shows yet another surprising richness of the K4-minor-free
class that it contains universal classes as dense as the rational numbers.
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1 Introduction
We assume graphs are finite and simple (with no loops and parallel edges). Let G, G′ be graphs. A
homomorphism from G to G′ is a mapping f :V (G) → V (G′) which preserves adjacency. That is,
{u, v} ∈ E(G) implies {f(u), f(v)} ∈ E(G′). We write G ≤ G′ if there is a homomorphism from G
to G′. The notation G < G′ means G ≤ G′ 6≤ G, whereas G ∼ G′ means G ≤ G′ ≤ G. If G ∼ G′,
we say G and G′ are hom-equivalent. The smallest graph H for which G ∼ H is called the core of G.
For finite graphs, the core is uniquely determined up to an isomorphism. It can also be seen that H is an
induced subgraph of G. This will be denoted by H ⊆ G. Let C and C′ be two classes of graphs. We also
write C ∼ C′ if for each graph G ∈ C there exists a G′ ∈ C′ such that G ∼ G′ and vice versa. See [2] for
introduction to graphs and their homomorphisms.
Let k ≥ d ≥ 1 be integers. The circular chromatic number of G, written χc(G), is the smallest rational
k/d such that G ≤ Kk/d, where Kk/d is the circular graph with V (Kk/d) = {0, 1, 2, . . . , k − 1} and

†Supported by a Grant 1M0021620808 of Czech Ministry of Education
‡Partially supported by DIMATIA and 1M0021620808

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: Unavoidable configuration of G (a minimal counterexample to Lemma 6) with odd girth 2k+1 and le1 +le2 =
le3 + le4 = 2k + 1.

E(Kk/d) = {{i, j} : d ≤ |i − j| ≤ k − d}. Note that when d = 1 we have the usual vertex coloring of
G. Let Ka/b{G ∈ G/K4 : χc(G) = a/b}. See [10] for some other equivalent definitions. It is trivial to

see the following:

Theorem 1 K2 ∼ {K2}.

It is well known that graphs in G/K4 are 3-colorable. Hell and Zhu [3] have shown that triangle-free
graphs in G/K4 have circular chromatic number at most 8/3. Hence no graph in G/K4 has circular
chromatic number in the interval (8/3,3). Hence, we have:

Theorem 2 K3 ∼ {C3}.

The main results of this note are the following two theorems establishing nice dichotomy between univer-
sality and homomorphism finiteness of the class Ka/b:

Theorem 3 K5/2 ∼ {C5}.

Somewhat surprisingly we show that Theorem 1, 2, and 3 cover all cases when Ka/b is a finite set.

Theorem 4 Ka/b is universal if a/b ∈ (2, 5/2) ∪ (5/2, 8/3].

In section 2 we prove Theorem 3 using a folding lemma. In section 3 we prove Theorem 4.

2 K5/2 is equivalent to {C5}
Let G be a graph. A thread in G is a path P ⊆ G such that the two endpoints of P have degree at least
3 and all internal vertices of P are degree 2 in G. We shall often use the fact that if P and P ′ are two
edge-disjoint paths and if the lengths of P and P ′ have same parity such that P is a thread and has at least
equal length as P ′, then there is a homomorphism that maps P to P ′ sending the two ends of P to the
two ends of P ′. Such a homomorphism is said to fold P to P ′. Let G be a graph and let Gs denote the
multi-graph we obtain from G by “smoothing” all degree 2 vertices of G. For each edge e of Gs, let Pe

denote the thread of G represented by e in Gs, and let le denote the length of Pe.

The following Folding Lemma for K4-minor-free graphs is an analogy of the Folding Lemma of Kloster-
meyer and Zhang [6] for planar graphs. Its proof is easy (see [7]).

Lemma 5 (Edge folding lemma) Let G ∈ G/{K4} be of odd girth 2k + 1 and let e, e′ be parallel edges
in Gs, with common end vertices x, y. If G is not homomorphic to a strictly smaller graph of the same
odd girth, then le + le′ = 2k + 1. Moreover, Pe ∪Pe′ is the unique cycle of length 2k + 1 containing both
x and y.

For short let Km denote K(7+5m)/(3+2m). Recall that V (Km) = {0, 1, . . . , 6 + 5m}.
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Lemma 6 Let G ∈ G/{K4} be of odd girth at least 7. Then χc(G) ≤ (7 + 5m)/(3 + 2m) < 5/2, for
some m < |V (G)|/2.

Proof: Let G ∈ G/{K4} be a core of odd girth g ≥ 7. It suffices to show G ≤ Km for some m ≥ 0.
Let Ḡs be the graph we get by identifying parallel edges of Gs. Then, Ḡs ∈ G/K4 and so there exists a
y ∈ V (Ḡs) such that the degree degḠs(y) = 2. Then 3 ≤ degGs(y) ≤ 4 (here we use a parity argument
that, the multiplicity of edges of Gs is at most two, as G is a core). By Lemma 5, and assuming G is
a minimal counterexample we can get degGs(y) = 4. Hence, a configuration depicted in Figure 1 is
unavoidable. Let G′ = G − (

⋃4
i=1 Pei

− {x, z}). By induction G′ ≤ Km, for some m ≥ 0. We can
assume f(x) = 0. By investigating a few cases for values of f(y), it is not hard to see G ≤ Km+1,
contrary to assumption (see [7] for detailed proof). 2 Proof of Theorem 3: Let G ∈ K5/2 be

of odd girth g. Then G ≤ C5. By Lemma 6, we have g ≤ 5. By Theorem 2, g > 3. Hence g = 5 and so
C5 ≤ G ≤ C5. Hence G ∼ C5. The converse is obvious since χc(C5) = 5/2.

3 Universal sets of G/K4 are dense in (2, 5/2) ∪ (5/2, 8/3]

In this section we shall show that we obtain a universal class Kp/q ⊂ G/K4 for arbitrary p/q ∈ (2, 5/2)∪
(5/2, 8/3]. We use a graph Gp/q with χc(G) = p/q as a generator of Kp/q. We assume Gp/q has the
following two properties:

(P1) Gp/q is hom-equivalent neither to a cycle nor to a vertex.
(P2) if G′ ∈ G/K4 satisfies (P1) and χc(G′) = p/q, then |V (G′)| ≥ |V (G)|.
Lemma 7 Let G ∈ G/K4 have properties (P1) and (P2). Then, G is 2-connected. Moreover, G is a core
and it is not vertex-transitive.

Proof: Since the circular graph Kk/d is a vertex-transitive graph, for all k, d, we have χc(G) =
maxi(χc(Hi)), 1 ≤ i ≤ p, where each Hi is a 2-connected component of G. Here, (P2) implies that
p = 1 and so G is 2-connected. Next, note that any graph G ∈ G/K4 is vertex-transitive if and only if
G is an odd cycle or K1 or K2. This is because all other 2-connected graphs in G/K4 have at least one
degree-2 vertex and one non-degree-2 vertex. Hence by (P1), G is not vertex-transitive. Moreover, by
(P1) the core of G also is not vertex-transitive. By (P2), we deduce G is a core. 2 For any rational

number p/q ∈ (2, 8/3], Pan and Zhu have shown in [9] a recursive method of constructing a 2-connected
graph Gp/q with χc(G) = p/q. If p/q 6= (2k + 1)/k then Gp/q satisfies (P1). If p/q = (2k + 1)/k, the
graph given in [9] is the cycle C2k+1 which is the natural candidate. Cycles do not satisfy (P1), hence we
introduce a graph denoted by Gk of odd girth 2k + 3 as follows: Take a triangle and double each edge to
obtain a multi-graph H . For i = 0, 1, 2, let {ei

1, e
i
2}, be the three parallel pairs of edges of H . To obtain

a thread of length k + 2, subdivide e0
1 and e1

1 each k + 1 times. Next subdivide e0
2 and e1

2 each k times.
Finally, subdivide e3

1 three times and e3
2, 2k − 2 times to obtain the graph Gk. We have:

Lemma 8 χc(Gk) = (2k + 1)/k for all k ≥ 3.

Proof: It is easy to see that Gk ≤ C2k+1, and Gk 6≤ C2k+3. Hence, we have (2k + 3)/(k + 1) <
χc(Gk) ≤ (2k + 1)/k. Note that gcd(4k + 4, 2k + 1) = 1. From basic number theory [8], using what is
known as the Farey sequence, we can see that any rational strictly between (2k+3)/(k+1) and (2k+1)/k
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has numerator a ≥ 4k + 4. But then, if k ≥ 3 the circumference of Gk is 4k + 3. It is well known [10]
that the numerator a of a circular chromatic number a/b of a graph G is at most its circumference. We
deduce χc(Gk) = (2k + 1)/k. 2

Corollary 9 For every rational number p/q ∈ (2, 5/2)∪ (5/2, 8/3] there is a graph Gp/q satisfying (P1)
and (P2).

Next we prove that Kp/q inherits universality from the class P of directed finite paths [5]. We take several
isomorphic copies H1, . . . ,Hn of a fixed graph H , such that χc(H) = p/q and construct a ‘path-like’
structured graph H ′ by identifying a vertex of Hi with a vertex of Hi+1. Then χc(H ′) = χc(H) because
the circular graphs are vertex-transitive. We call such a construction K1-concatenation. A more precise
definition of ‘K1-concatenation’ of a graph H:
Let P ∈ P be an oriented path of length n ≥ 1, V (P ) = {v1, v2, . . . , vn+1}. Then either vivi+1 or
vi+1vi ∈ E(P ) (but not both). Let H be a graph and a, b ∈ V (H). Let H1,H2, . . . ,Hn be isomorphic
copies of H and let ai, bi be the vertices of Hi corresponding to a and b. The K1-concatenation of H
by P is a graph P ∗ (H, a, b) constructed as follows: For i = 1, . . . , n, if vivi+1 ∈ E(P ), choose bi

(otherwise choose ai). Then identify every chosen vertex of Hi with the unchosen vertex of Hi+1. To
make the construction non-trivial, we choose a and b so that there is no automorphism sending a to b or b
to a. If H satisfies (P1), then we know there exists such a pair.

Lemma 10 Let Gp/q ∈ G/K4 satisfy (P1), (P2). Then, Kp/q is universal.

Proof: Since the class of oriented paths P is universal we show for every P, P ′ ∈ P , we have P ≤ P ′ if
and only if P ∗ (Gp/q, a, b) ≤ P ′ ∗ (Gp/q, a, b). This proves the lemma.
The forward implication is straightforward. To prove the reverse implication, let P, P ′ ∈ P of length
n and n′ such that P is a core and suppose there exists a homomorphism f : P ∗ (Gp/q, a, b) → P ′ ∗
(Gp/q, a, b). Assume further that P is not an edge, since this case is trivial, and without loss of generality,
assume that the first edge of P is directed forward. Let H1, . . . ,Hn and H ′

1, . . . ,H
′
n′ be isomorphic

copies of Gp/q. First we show that f |Hi is induced by an automorphism of Gp/q for each i. Suppose not.
Then the image f(Hi) is connected. If f(Hi) is 2-connected then, it is isomorphic to Gp/q, since Gp/q

is a core. Suppose f(Hi) is not 2-connected. Then each 2-connected component F of f(Hi) is a proper
subgraph of Gp/q. By (P2), we have χc(F ) < p/q. Then, H 6≤ f(Hi), a contradiction. Hence f |Hi

is
induced by an automorphism of Gp/q.
Now we claim a stronger assertion that for any i, f(ai) = a′

j and f(bi) = b′
j , for some j, 1 ≤ j ≤ m.

let H ′
j = f(H1). Since f |H1 is an automorphism, f(b1) must be in the same automorphism class of b′

j .
Suppose that f(b1) 6= b′

j , then f(b1) is not a cut-vertex of P ′ ∗ (Gp/q, a, b). As b1 is a cut-vertex of
P ∗ (Gp/q, a, b), it is identified with either a2 or b2. If it were identified with a2, then f |H2 would be
an automorphism of Gp/q such that f(a2) = b′

j , contrary to the choice of a, b in V (Gp/q). Hence b1 is
identified with b2. Similarly, we get a2 is identified with a3, and b3 with b4 and so on. This implies P is
a ‘zig-zag’ which is hom-equivalent to an edge, contrary to P being a core. So f(b1) = b′

j . The claim
follows by induction on the length of P .
We define a homomorphism g : V (P ) → V (P ′) so that if f(ai) = a′

j then g(vi) = v′
j and similarly for

bi. By our construction g preserves the adjacency condition and so P ≤ P ′. 2 Proof of Theorem 4: Let

a/b ∈ (2, 5/2) ∪ (5/2, 8/3]. By Lemma 9, there is a graph Ga/b with properties (P1),(P2). By Lemma
10, Ka/b is universal. This concludes our result.
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