Packing Three-Vertex Paths in a Subcubic Graph

Abstract : In our paper we consider the $P_3$-packing problem in subcubic graphs of different connectivity, improving earlier results of Kelmans and Mubayi. We show that there exists a $P_3$-packing of at least $\lceil 3n/4\rceil$ vertices in any connected subcubic graph of order $n>5$ and minimum vertex degree $\delta \geq 2$, and that this bound is tight. The proof is constructive and implied by a linear-time algorithm. We use this result to show that any $2$-connected cubic graph of order $n>8$ has a $P_3$-packing of at least $\lceil 7n/9 \rceil$ vertices.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.213-218, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184370
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:37:57
Dernière modification le : jeudi 11 mai 2017 - 01:02:53
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:02:33

Fichier

dmAE0142.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184370, version 1

Collections

Citation

Adrian Kosowski, Michal Malafiejski, Pawel Zyliński. Packing Three-Vertex Paths in a Subcubic Graph. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.213-218, 2005, DMTCS Proceedings. 〈hal-01184370〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

293