Fast separation in a graph with an excluded minor

Abstract : Let $G$ be an $n$-vertex $m$-edge graph with weighted vertices. A pair of vertex sets $A,B \subseteq V(G)$ is a $\frac{2}{3} - \textit{separation}$ of $\textit{order}$ $|A \cap B|$ if $A \cup B = V(G)$, there is no edge between $A \backslash B$ and $B \backslash A$, and both $A \backslash B$ and $B \backslash A$ have weight at most $\frac{2}{3}$ the total weight of $G$. Let $\ell \in \mathbb{Z}^+$ be fixed. Alon, Seymour and Thomas [$\textit{J. Amer. Math. Soc.}$ 1990] presented an algorithm that in $\mathcal{O}(n^{1/2}m)$ time, either outputs a $K_\ell$-minor of $G$, or a separation of $G$ of order $\mathcal{O}(n^{1/2})$. Whether there is a $\mathcal{O}(n+m)$ time algorithm for this theorem was left as open problem. In this paper, we obtain a $\mathcal{O}(n+m)$ time algorithm at the expense of $\mathcal{O}(n^{2/3})$ separator. Moreover, our algorithm exhibits a tradeoff between running time and the order of the separator. In particular, for any given $\epsilon \in [0,\frac{1}{2}]$, our algorithm either outputs a $K_\ell$-minor of $G$, or a separation of $G$ with order $\mathcal{O}(n^{(2-\epsilon )/3})$ in $\mathcal{O}(n^{1+\epsilon} +m)$ time.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.45-50, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184376
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:38:21
Dernière modification le : lundi 20 novembre 2017 - 22:34:02
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:03:30

Fichier

dmAE0110.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184376, version 1

Collections

Citation

Bruce Reed, David R. Wood. Fast separation in a graph with an excluded minor. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.45-50, 2005, DMTCS Proceedings. 〈hal-01184376〉

Partager

Métriques

Consultations de la notice

256

Téléchargements de fichiers

65