Permutations with short monotone subsequences

Abstract : We consider permutations of $1,2,...,n^2$ whose longest monotone subsequence is of length $n$ and are therefore extremal for the Erdős-Szekeres Theorem. Such permutations correspond via the Robinson-Schensted correspondence to pairs of square $n \times n$ Young tableaux. We show that all the bumping sequences are constant and therefore these permutations have a simple description in terms of the pair of square tableaux. We deduce a limit shape result for the plot of values of the typical such permutation, which in particular implies that the first value taken by such a permutation is with high probability $(1+o(1))n^2/2$.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.57-62, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184378
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:38:29
Dernière modification le : jeudi 11 mai 2017 - 01:02:53
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:03:52

Fichier

dmAE0112.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184378, version 1

Collections

Citation

Dan Romik. Permutations with short monotone subsequences. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.57-62, 2005, DMTCS Proceedings. 〈hal-01184378〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

110