Minor-monotone crossing number

Abstract : The minor crossing number of a graph $G$, $rmmcr(G)$, is defined as the minimum crossing number of all graphs that contain $G$ as a minor. We present some basic properties of this new minor-monotone graph invariant. We give estimates on mmcr for some important graph families using the topological structure of graphs satisfying \$mcr(G) ≤k$.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.123-128, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184390
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:39:13
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:06:09

Fichier

dmAE0124.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184390, version 1

Collections

Citation

Drago Bokal, Gašper Fijavž, Bojan Mohar. Minor-monotone crossing number. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.123-128, 2005, DMTCS Proceedings. 〈hal-01184390〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

93