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Before this work, at least 762 inequivalent Hadamard matrices of order 36 were known. We found 7238 Hadamard
matrices of order 36 and 522 inequivalent [72, 36, 12] double-even self-dual codes which are obtained from all 2-
(35, 17, 8) designs with an automorphism of order 3 and 2 fixed points and blocks.
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1 Introduction
A balanced incomplete block design (BIBD) [1] with parameters 2-(v, b, r, k, λ) (short 2-(v, k, λ)) is a
pair (V,B) where V is a v-set (elements are called points) and B is a collection of b k-subsets (elements
are called blocks) of V such that each point is contained in exactly r blocks and any pair of points is
contained in exactly λ blocks.

A Hadamard matrix of order n is an n × n (1,−1)-matrix satisfying HHt = nI . Each Hadamard
matrix can be normalized, i.e. replaced by an equivalent Hadamard matrix whose first row and column
are ones. When deleting the first row and column of a normalized Hadamard matrix of order 4m, a
symmetric 2-(4m− 1, 2m− 1,m− 1) design is obtained which is called a Hadamard design.

Hadamard matrices have been classified up to order 28. For higher orders, only partial classifications
are known. Lin, Wallis and Zhu [3] found 66104 inequivalent Hadamard matrices of order 32. Extensive
results on order 32 appear in [4] and [5]. Before this work, at least 762 inequivalent Hadamard matrices
of order 36 were known, see [2], [6] and [7].

We found 7238 Hadamard matrices of order 36, which are obtained from all 2-(35, 17, 8) designs with
an automorphism of order 3 and 2 fixed points and blocks. In order to be sure about our computer results,
we made two independent implementations.

A linear code with block length n, dimension k, and minimum distance d is referred to as an [n, k, d]-
code. Hadamard designs are related to self-dual codes, see [9] and [10]. Let A be the incidence matrix
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of the inverse 2-(35, 18, 9) design of 2-(35, 17, 8), and A+ =
(

A U t

U 0

)
, where U is the all one

vector of dimension 35. A generator matrix of a double-even self-dual code of length 72 can be obtained
as

(
A+ I36

)
. 522 inequivalent [72, 36, 12] codes are obtained from all 2-(35, 17, 8) designs with

an automorphism of order 3 and 2 fixed points and blocks. We obtained codes with 33 new weight
enumerators different from previously known [72, 36, 12] codes [8].

2 Enumeration of 2-(v, k, λ) designs with an automorphism of or-
der 3

We briefly describe the main approach which was used for the enumeration of all 2-(35, 17, 8) designs
with an automorphism of order 3 and 2 fixed points and blocks.

Let A be the incidence matrix of a 2-(v, k, λ) symmetric design, with a row for each point and a column
for each block. Assume an automorphism of order 3 with f fixed points and blocks which works on both
the rows and columns of the incidence matrix as

(1) (2) . . . (f ) (f+1 f+2 f+3) (f+4 f+5 f+6). . . (v-2 v-1 v)
Thus the first f rows and columns are fixed. We can structure the incidence matrix as

A =
(

Ff,f Gf,v−f

Hv−f,f Xv−f,v−f

)
.

2.1 Generation scheme
The generation scheme can be split into the following phases:

1. Find all possible configurations for the fixed parts F , G and H .

2. For each of these fixed configurations, generate Xv−f,v−f , which is structured into v−f
3 × v−f

3
order 3 circulants.

(a) Generate all v−f
3 × v−f

3 orbit matrices M meeting constraints derived from the design param-
eters. An entry in M stands for the number of ones in a row of the circulant.

(b) Extend each unique solution for M to a full matrix X by replacing each entry mij of M by
all the possible 3× 3 circulants for that entry.

2.2 Orbit Matrix Generation Phase
Define n = v−f

3 , hi the number of ones in row 3i (or 3i− 1 or 3i− 2) of H (1 ≤ i ≤ n), gj the number
of ones in column 3j of G (1 ≤ j ≤ n), hpq the scalar product between rows 3p and 3q of H and gpq the
scalar product between columns 3p and 3q of G. From double counting arguments on the number of ones
in each row (column) and the number of (1,1) intersections between two rows (columns), the following
constraints for the n× n orbit matrix M with entries mij (1 ≤ i, j ≤ n) are derived:

(1)
∑n

j=1 mij = k − hi ; 1 ≤ i ≤ n

(2)
∑n

i=1 mij = k − gj ; 1 ≤ j ≤ n

(3)
∑n

j=1 m2
ij = 2λ + k − 3hi; ; 1 ≤ i ≤ n
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(4)
∑n

i=1 m2
ij = 2λ + k − 3gj ; ; 1 ≤ j ≤ n

(5)
∑n

j=1 mpjmqj = 3(λ− hpq) ; 1 ≤ p < q ≤ n

(6)
∑n

i=1 mipmiq = 3(λ− gpq) ; 1 ≤ p < q ≤ n

In order to speed up the search, dynamic programming is used. We first determine all possible row
patterns meeting constraints (1) and (3), all possible column patterns meeting constraints (2) and (4), all
possible row-row intersection patterns meeting (5) and all possible column-column intersection patterns
meeting (6). In the backtracking algorithm which enumerates all orbit matrices, we check after each
binding of an entry (to one of the four possible values), if there remains at least one pattern which can be
met (for all constraints). We use a standard backtracking algorithm which fills the matrix entry by entry,
row by row. We shall call this row order generation. Isomorphs are partially rejected by generating rows
and columns in some lexical order imposed by the fixed points and blocks.

2.3 Orbit Matrix Expanding Phase

For all obtained orbit matrices with entries from {0,1,2,3} we extend each entry to all possible circulants.
For 0 and 3 there is only a single possible circulant, but for 1 and 2 there are three possible circulants.

Row and column regularity constraints (design parameters k = r) are trivially satisfied. Row scalar
product constraints are always satisfied between all three rows of a single extension of one row (column) of
M . Here again, we use the same dynamic programming technique for all the different possible intersection
patterns between two rows (columns).

When the automorphism group of the orbit matrix is trivial, we don’t generate in a fixed row order
generation, but select the next entry to fill which has the smallest number of possible entries left. This
means we combine a backtracking algorithm with a forward checking method which reduces the possible
entries after each expanding of an orbit matrix entry to a circulant.

However, when the automorphism group of the orbit matrix solution M is not trivial, we first reorder
the orbit matrix based on its automorphism group, this decreases the size of the search space. The reason
for this is the use of a partial isomorph rejection technique based on the automorphism group of the orbit
matrix M .

The orbit matrix extension X together with the fixed parts F , G and H form the incidence matrix of
the 2-(v, k, λ) Hadamard design.

3 Results
We found 63635 2-(35, 17, 8) Hadamard designs with an automorphism of order 3 with 2 fixed points and
blocks. These were then converted to Hadamard matrices, of which 7238 turned out to be non-isomorphic,
these are summarized in Table 1.

522 inequivalent [72, 36, 12] codes are obtained from all 2-(35, 17, 8) designs with an automorphism of
order 3 and 2 fixed points and blocks. The number of different weight enumerators is 70. In Table 2, we
list all the α values of the weight enumerators written in the form

1 + (4398 + α)y12 + (197073 − 12α)y16 + (18396972 + 66α)y20 + (461995395 − 220α)y24 +
(4399519410 + 495α)y28 + (16599232683− 792α)y32 + (25760784872 + 924α)y36 + . . ..
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4 Future Work
2-(35, 17, 8) and 2-(31, 15, 7) designs will be further considered with an automorphism of order 3. 2-
(31, 15, 7) designs relate to Hadamard matrices of order 32, the first open case.

|Aut| Non Isomorphic
ALL 7238

6 6754
12 243
18 24
24 84
36 23
42 1
48 40
54 12
72 4
96 4

108 7

|Aut| Non Isomorphic

144 3
162 1
192 7
216 7
288 2
324 1
336 1
384 3
432 3
648 1
768 3

|Aut| Non Isomorphic

972 1
1152 1
1296 1
1728 1
2304 1
3072 1
3456 1
8640 1

31104 1
2903040 1

Tab. 1: 7238 Hadamard matrices of order 36.

α Unique
ALL 522

(1) -3426 16
(2) -3480 8
(3) -3390 21
(4) -3354 12
(5) -3444 11
(6) -3408 11
(7) -3372 8
(8) -3336 7
(9) -3378 21

(10) -3432 19
(11) -3468 9
(12) -3558 1
(13) -3414 26
(14) -3276 9
(15) -3312 6
(16) -3258 3
(17) -3288 11
(18) -3198 1

α Unique

(19) -3450 22
(20) -3360 16
(21) -3324 14
(22) -3024 1
(23) -3252 4
(24) -3294 7
(25) -3300 9
(26) -3384 17
(27) -3264 3
(28) -3462 12
(29) -3228 2
(30) -3456 9
(31) -3420 14
(32) -3402 13
(33) -3474 8
(34) -3282 6
(35) -3552 3
(36) -3366 16

α Unique

(37) -3330 9
(38) -3204 3
(39) -3318 7
(40) -3348 14
(41) -3534 1
(42) -3486 8
(43) -3522 7
(44) -3270 2
(45) -3492 8
(46) -3342 12
(47) -3396 27
(48) -3222 3
(49) -3240 2
(50) -3078 1
(51) -3438 3
(52) -3546 2
(53) -3498 2
(54) -3306 5

α Unique

(55) -3510 3
(56) -3180 1
(57) -3540 1
(58) -3504 9
(59) -3192 1
(60) -3516 2
(61) -3162 2
(62) -3234 2
(63) -3072 1
(64) -3684 1
(65) -3090 1
(66) -2910 1
(67) -2928 1
(68) -3564 2
(69) -3210 1
(70) -3156 1

Tab. 2: 522 double-even self-dual [72,36,12] codes.
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