On the Minimum Number of Completely 3-Scrambling Permutations

Abstract : A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible orders on $\pi_i (x_1),\ldots, \pi_i(x_k)$. Let $N^{\ast}(n,k)$ be the minimum size of such a family. This paper focuses on the case $k=3$. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison. $\frac{2}{ \log _2e} \log_2 n \leq N^{\ast}(n,3) \leq 2\log_2n + (1+o(1)) \log_2 \log _2n$. We also prove the existence of $\lim_{n \to \infty} N^{\ast}(n,3) / \log_2 n = c_3$. Determining the value $c_3$ and proving the existence of $\lim_{n \to \infty} N^{\ast}(n,k) / \log_2 n = c_k$ for $k \geq 4$ remain open.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.351-356, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184432
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 14:58:36
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:10:39

Fichier

dmAE0168.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184432, version 1

Collections

Citation

Jun Tarui. On the Minimum Number of Completely 3-Scrambling Permutations. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.351-356, 2005, DMTCS Proceedings. 〈hal-01184432〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

53