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Hamiltonian cycles in torical lattices

Vladimir K. Leontiev1†

1Dorodnitsyn Computing Center of RAS, & Vavilova, 40, Moscow, 117967, Russia

We establish sufficient conditions for a toric lattice Tm,n to be Hamiltonian. Also, we give some asymptotics for the
number of Hamiltonian cycles in Tm,n.

Keywords: Hamiltonian cycle, toric lattice, Hardy–Littlewood method.

Let Tm,n = Jm × Jn be a toric lattice, i.e., the Cartesian product of two directed cycles lengths m and
n respectively.

Erdös problem [1]. When Tm,n contains Hamiltonian cycles?
The next theorem was proved by A.A.Evdokimov [2].

Theorem 1 Tm,n is Hamiltonian iff there are solutions of the following Diophantine system

x + y = gcd(m,n),
gcd(x, m) = 1, gcd(y, n) = 1 (1)

(gcd means the greatest common divisor).

Let Jm,n be the number of solutions of the system (1). We obtain estimates for Jm,n in two special
cases. Let

m =
r∏

i=1

pαi
i , n =

s∏
j=1

q
βj

j

are prime decompositions for m,n. We use the following notations

P =
r∏

i=1

pi, Q =
s∏

j=1

qj , λ(P,Q) =
∏

r|lcm(P,Q)

(
1− 1

r

)
(lcm means the least common multiple).

Theorem 2 Jm,n ≥ 1 if gcd(m,n) >
[ r∏

i=1

(1 + pi) +
s∏

j=1

(1 + qj)
](

4λ(P,Q)
)−1

.
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The proofs of the theorems 1, 2 are based on the following analytic and combinatorial results.
Let

JN (u) =
∑

(a,N)=1

ua, N = pα1
1 . . . pαk

k .

Lemma 1 JN (u) =
1

1− u
−

k∑
i=1

1
1− upi

+
k∑

1≤i<j≤k

1
1− upipj

− . . .

This formula can be easily proved by inclusion - exclusion principle.
Let Sr(m,n) be the number of solutions of the system

x + y = r,
gcd(x,m) = 1, gcd(y, n) = 1.

(2)

The generating function for Sr(m,n) is related with Jn(u) by the following formula.

Lemma 2
∞∑

r=1

Sr(m,n)ur = Jm(u)Jn(u). (3)

Formula (3) implies an expression for the number of solutions of the system (1).

Lemma 3 Let N = gcd(m,n) + 1. Then the following equation holds

Jm,n = gcd(m,n)
∑

u|P, v|Q

µ(u)µ(v)
lcm(u, v)

+
∑

u|P, v|Q

µ(u)µ(v)(u + v)
2 lcm(u, v)

+

∑
u|P, v|Q

µ(u)
u

∑
αu=1

1
αN−1(αv − 1)

+
∑

u|P, v|Q

µ(v)
v

∑
αv=1

1
αN−1(αu − 1)

. (4)

In sums of type ∑
αu=1

1
αN−1(αv − 1)

(5)

the summation is over those roots of equation αu = 1 that are not the roots of equation αv = 1.

Sums (5) are called Dedekind sums. They are well-known in combinatorial analysis (e.g., see [3]).
To simplify (4) we use identities about Möbius function. They are 2-dimensional analogues of the

classical formula ∑
d|n

µ(d)
d

=
∏
p|n

(
1− 1

p

)
.

An example of these identities is given by the following Lemma.

Lemma 4 ([4])
∑

u|m, v|n

µ(u)µ(v)
lcm(u, v)

=
∏

r|lcm(P,Q)

(
1− 1

r

)
.
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Dealing with Dedekind sums (5) we use the following useful statement. Let

Sn(a) =
∑
αb=1

1
αn(αa − 1)

, (6)

where summation is over those roots of equation xb = 1 that are not the roots of equation xa = 1. By m0

we denote the smallest positive solution of equation

ax ≡ −(n + a) (mod b).

Let w(a, b) = m0 − 1.

Lemma 5
Sn(a) =

b

2
− gcd(a, b)

2 lcm(a, b)
− w(a, b). (7)

References
[1] Trotter W.T., Erdös P. When the cartesian product of directed cycles is hamiltonian. J. Graph Theory.

V.2, 1978. P. 137–142.

[2] Evdokimov A.A. Numeration of subsets of a finite set. (In Russian) Metody Diskret. Analiz. V. 34,
1980. P. 8–26.

[3] Ira M. Gessel. Generating functions and generalized Dedekind sums. The electronic Journal of Com-
binatorics. V. 4, no. 2, 1997.

[4] Leontiev V.K. Hamiltonian cycles in toric lattices. (In Russian) DAN, V. 395, no 5, 2004. P. 590–591.



400 Vladimir K. Leontiev


